R. Kohli, M. Kirby, and K. Setchell, Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities, AJP: Gastrointestinal and Liver Physiology, vol.299, issue.3
DOI : 10.1152/ajpgi.00221.2010

M. Patti, S. Houten, and A. Bianco, Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism, Obesity, vol.260, issue.9
DOI : 10.1038/oby.2009.102

URL : https://hal.archives-ouvertes.fr/inserm-00420817

T. Li, E. Owsley, and M. Matozel, Transgenic expression of cholesterol 7alpha-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice

J. Prawitt and B. Staels, Bile Acid Sequestrants: Glucose-Lowering Mechanisms, Metabolic Syndrome and Related Disorders, vol.8, issue.S1, pp.3-8, 2010.
DOI : 10.1089/met.2010.0096

S. Schwartz, Y. Lai, and J. Xu, The Effect of Colesevelam Hydrochloride on Insulin Sensitivity and Secretion in Patients With Type 2 Diabetes: A Pilot Study, Metabolic Syndrome and Related Disorders, vol.8, issue.2, pp.179-188, 2010.
DOI : 10.1089/met.2009.0049

M. Kobayashi, H. Ikegami, and T. Fujisawa, Prevention and Treatment of Obesity, Insulin Resistance, and Diabetes by Bile Acid-Binding Resin, Diabetes, vol.56, issue.1, pp.239-247, 2007.
DOI : 10.2337/db06-0353

Q. Shang, M. Saumoy, and J. Holst, Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1, AJP: Gastrointestinal and Liver Physiology, vol.298, issue.3, pp.419-443, 2010.
DOI : 10.1152/ajpgi.00362.2009

L. Chen, J. Mcnulty, and D. Anderson, Cholestyramine Reverses Hyperglycemia and Enhances Glucose-Stimulated Glucagon-Like Peptide 1 Release in Zucker Diabetic Fatty Rats, Journal of Pharmacology and Experimental Therapeutics, vol.334, issue.1, pp.164-170, 2010.
DOI : 10.1124/jpet.110.166892

J. Prawitt, S. Caron, and B. Staels, How to modulate FXR activity to treat the Metabolic Syndrome, Drug Discovery Today: Disease Mechanisms, vol.6, issue.1-4, pp.55-64, 2009.
DOI : 10.1016/j.ddmec.2010.05.002

T. Inagaki, M. Choi, and A. Moschetta, Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis, Cell Metabolism, vol.2, issue.4, pp.217-225, 2005.
DOI : 10.1016/j.cmet.2005.09.001

Y. Kawamata, R. Fujii, and M. Hosoya, A G Protein-coupled Receptor Responsive to Bile Acids, Journal of Biological Chemistry, vol.278, issue.11, pp.9435-9440, 2003.
DOI : 10.1074/jbc.M209706200

T. Maruyama, Y. Miyamoto, and T. Nakamura, Identification of membrane-type receptor for bile acids (M-BAR), Biochemical and Biophysical Research Communications, vol.298, issue.5, pp.714-719, 2002.
DOI : 10.1016/S0006-291X(02)02550-0

A. Nguyen and B. Bouscarel, Bile acids and signal transduction: Role in glucose homeostasis, Cellular Signalling, vol.20, issue.12, pp.2180-2197, 2008.
DOI : 10.1016/j.cellsig.2008.06.014

D. Duran-sandoval, G. Mautino, and G. Martin, Glucose Regulates the Expression of the Farnesoid X Receptor in Liver, Diabetes, vol.53, issue.4, pp.890-898, 2004.
DOI : 10.2337/diabetes.53.4.890

D. Duran-sandoval, B. Cariou, and F. Percevault, The Farnesoid X Receptor Modulates Hepatic Carbohydrate Metabolism during the Fasting-Refeeding Transition, Journal of Biological Chemistry, vol.280, issue.33, pp.29971-29979, 2005.
DOI : 10.1074/jbc.M501931200

K. Yamagata, H. Daitoku, and Y. Shimamoto, Bile Acids Regulate Gluconeogenic Gene Expression via Small Heterodimer Partner-mediated Repression of Hepatocyte Nuclear Factor 4 and Foxo1, Journal of Biological Chemistry, vol.279, issue.22, pp.23158-23165, 2004.
DOI : 10.1074/jbc.M314322200

K. Ma, P. Saha, and L. Chan, Farnesoid X receptor is essential for normal glucose homeostasis, Journal of Clinical Investigation, vol.116, issue.4, pp.1102-1109, 2006.
DOI : 10.1172/JCI25604

K. Stayrook, K. Bramlett, and R. Savkur, Regulation of Carbohydrate Metabolism by the Farnesoid X Receptor, Endocrinology, vol.146, issue.3, pp.984-991, 2005.
DOI : 10.1210/en.2004-0965

Y. Zhang, F. Lee, and G. Barrera, Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice, Proceedings of the National Academy of Sciences, vol.103, issue.4, pp.1006-1011, 2006.
DOI : 10.1073/pnas.0506982103

B. Cariou, K. Van-harmelen, and D. Duran-sandoval, The Farnesoid X Receptor Modulates Adiposity and Peripheral Insulin Sensitivity in Mice, Journal of Biological Chemistry, vol.281, issue.16, pp.11039-11049, 2006.
DOI : 10.1074/jbc.M510258200

S. Cipriani, A. Mencarelli, and G. Palladino, FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats, The Journal of Lipid Research, vol.51, issue.4
DOI : 10.1194/jlr.M001602

I. Popescu, A. Helleboid-chapman, and A. Lucas, The nuclear receptor FXR is expressed in pancreatic ??-cells and protects human islets from lipotoxicity, FEBS Letters, vol.117, issue.13, pp.2845-2851, 2010.
DOI : 10.1016/j.febslet.2010.04.068

URL : https://hal.archives-ouvertes.fr/inserm-00485665

B. Renga, A. Mencarelli, and P. Vavassori, The bile acid sensor FXR regulates insulin transcription and secretion, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.3, pp.363-372, 2010.
DOI : 10.1016/j.bbadis.2010.01.002

S. Katsuma, Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1, Biochemical and Biophysical Research Communications, vol.329, issue.1, pp.386-390, 2005.
DOI : 10.1016/j.bbrc.2005.01.139

H. Sato, C. Genet, and A. Strehle, Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea, Biochemical and Biophysical Research Communications, vol.362, issue.4, pp.793-798, 2007.
DOI : 10.1016/j.bbrc.2007.06.130

URL : https://hal.archives-ouvertes.fr/hal-00188900

C. Thomas, A. Gioiello, and L. Noriega, TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis, Cell Metabolism, vol.10, issue.3, pp.167-177, 2009.
DOI : 10.1016/j.cmet.2009.08.001

URL : https://hal.archives-ouvertes.fr/inserm-00420823

U. Ozcan, E. Yilmaz, and L. Ozcan, Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes, Science, vol.313, issue.5790, pp.1137-1140, 2006.
DOI : 10.1126/science.1128294

M. Kars, L. Yang, and M. Gregor, Tauroursodeoxycholic Acid May Improve Liver and Muscle but Not Adipose Tissue Insulin Sensitivity in Obese Men and Women, Diabetes, vol.59, issue.8, pp.1899-1905, 2010.
DOI : 10.2337/db10-0308