G. Falk, Risk Factors for Esophageal Cancer Development, Surgical Oncology Clinics of North America, vol.18, issue.3, pp.469-85, 2009.
DOI : 10.1016/j.soc.2009.03.005

P. Flamen, A. Lerut, and E. Van-cutsem, Utility of Positron Emission Tomography for the Staging of Patients With Potentially Operable Esophageal Carcinoma, Journal of Clinical Oncology, vol.18, issue.18, pp.3202-3212, 2000.
DOI : 10.1200/JCO.2000.18.18.3202

P. Heeren, P. Jager, F. Bongaerts, H. Van-dullemen, W. Sluiter et al., Detection of distant metastases in esophageal cancer with (18)F-FDG PET, J Nucl Med, vol.45, pp.980-987, 2004.

E. Vliet, M. Heijenbrok-kal, M. Hunink, E. Kuipers, and P. Siersema, Staging investigations for oesophageal cancer: a meta-analysis, British Journal of Cancer, vol.89, issue.3, pp.547-57, 2008.
DOI : 10.1136/gut.32.1.16

T. Kim, H. Kim, K. Lee, and M. Kim, Multimodality Assessment of Esophageal Cancer: Preoperative Staging and Monitoring of Response to Therapy, RadioGraphics, vol.29, issue.2, pp.403-405, 2009.
DOI : 10.1148/rg.292085106

H. Chuang and H. Macapinlac, The evolving role of PET-CT in the management of esophageal cancer, Q J Nucl Med Mol Imaging, vol.53, issue.2, pp.201-210, 2009.

M. Macmanus, U. Nestle, and K. Rosenzweig, PET-based treatment planning in radiotherapy: a new standard, J Nucl Med, vol.48, issue.S1, pp.68-77, 2007.

V. Grégoire, K. Haustermans, and X. Geets, The value of PET/CT in gross tumor volume delineation in lung and esophagus cancer, Int J Radiat Oncol Biol Phys, vol.60, issue.S, pp.536-537, 2004.

J. Choi, H. Jang, and Y. Shim, 18F-FDG PET in patients with esophageal squamous cell carcinoma undergoing curative surgery: prognostic implications, J Nucl Med, vol.45, issue.11, pp.1843-50, 2004.

M. Mamede, P. Abreu-e-lima, and M. Oliva, CT tumor segmentation-derived indices of metabolic activity to assess response to neoadjuvant therapy and progression-free (20) Preoperative 18FDG positron emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection, Ann Thorac Surg, vol.81, pp.1076-1081, 2006.

S. Yendamuri, S. Swisher, and A. Correa, Esophageal tumor length is independently associated with long-term survival, Cancer, vol.11, issue.3, pp.508-524, 2009.
DOI : 10.1002/cncr.24062

J. Roedl, M. Harisinghani, and R. Colen, Assessment of Treatment Response and Recurrence in Esophageal Carcinoma Based on Tumor Length and Standardized Uptake Value on Positron Emission Tomography???Computed Tomography, The Annals of Thoracic Surgery, vol.86, issue.4, pp.1131-1139, 2008.
DOI : 10.1016/j.athoracsur.2008.05.019

U. Nestle, S. Kremp, and A. Schaefer-schuler, Comparison of Different Methods for Delineation of 18F-FDG PET-Positive Tissue for Target Volume Definition in Radiotherapy of Patients with Non-Small Cell Lung Cancer, J Nucl Med, vol.46, issue.238, pp.1342-1350, 2005.

M. Hatt, C. Cheze-le-rest, and P. Descourt, Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.1, pp.301-308, 2010.
DOI : 10.1016/j.ijrobp.2009.08.018

URL : https://hal.archives-ouvertes.fr/inserm-00537776

S. Larson, Y. Erdi, and T. Akhurst, Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging The Visual Response Score and the Change in Total Lesion Glycolysis, Clinical Positron Imaging, vol.2, issue.3, pp.159-71, 1999.
DOI : 10.1016/S1095-0397(99)00016-3

L. Velasquez, Repeatability of 18F-FDG PET in a Multicenter Phase I Study of Patients with Advanced Gastrointestinal Malignancies, Journal of Nuclear Medicine, vol.50, issue.10, pp.1646-1654, 2009.
DOI : 10.2967/jnumed.109.063347

M. Hatt, A. Turzo, and C. Roux, A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET, IEEE Transactions on Medical Imaging, vol.28, issue.6, pp.881-893, 2009.
DOI : 10.1109/TMI.2008.2012036

URL : https://hal.archives-ouvertes.fr/inserm-00372910

J. Bland and D. Altman, Statistical methods for assessing agreement between two methods of clinical measurement, International Journal of Nursing Studies, vol.47, issue.8, pp.307-310, 1986.
DOI : 10.1016/j.ijnurstu.2009.10.001

E. Kaplan and P. Meyer, Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, vol.37, issue.282, pp.457-481, 1958.
DOI : 10.1214/aoms/1177731566

C. Metz, Basic principles of ROC analysis, Seminars in Nuclear Medicine, vol.8, issue.4, pp.283-98, 1978.
DOI : 10.1016/S0001-2998(78)80014-2

D. Cox, Regression Models and Life-Tables, Journal of the Royal Statistical Society Series B, vol.197234, issue.2, pp.187-220
DOI : 10.1007/978-1-4612-4380-9_37

R. Boellaard, Influence of ROI definition, partial volume correction and SUV normalization on SUV-survival correlation in oesophageal cancer, Nucl Med Commun, vol.31, issue.7, pp.652-660, 2010.

S. Himeno, S. Yasuda, H. Shimada, T. Tajima, and H. Makuuchi, Evaluation of Esophageal Cancer by Positron Emission Tomography, Japanese Journal of Clinical Oncology, vol.32, issue.9, pp.340-346, 2002.
DOI : 10.1093/jjco/hyf073

T. Fukunaga, S. Okazumi, Y. Koide, K. Isono, and K. Imazeki, Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET, J Nucl Med, vol.39, issue.35, pp.1002-1009, 1998.

M. Taylor, P. Smith, and W. Brix, Correlations between selected tumor markers and fluorodeoxyglucose maximal standardized uptake values in esophageal cancer???, European Journal of Cardio-Thoracic Surgery, vol.35, issue.4, pp.699-705, 2009.
DOI : 10.1016/j.ejcts.2008.11.029

S. Swisher, E. J. Maish, and M. , 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma, Cancer, vol.101, issue.8, pp.1776-1785, 2004.
DOI : 10.1002/cncr.20585

X. Zhong, Y. J. Zhang, and B. , Using 18F-Fluorodeoxyglucose Positron Emission Tomography to Estimate the Length of Gross Tumor in Patients With Squamous Cell Carcinoma of the Esophagus, International Journal of Radiation Oncology*Biology*Physics, vol.73, issue.1, pp.136-141, 2009.
DOI : 10.1016/j.ijrobp.2008.04.015

P. Tylski, S. Stute, and N. Grotus, Comparative Assessment of Methods for Estimating Tumor Volume and Standardized Uptake Value in 18F-FDG PET, Journal of Nuclear Medicine, vol.51, issue.2, pp.268-76, 2010.
DOI : 10.2967/jnumed.109.066241

URL : https://hal.archives-ouvertes.fr/inserm-00466261

P. Xie, J. Yue, and H. Zhao, Prognostic value of 18F-FDG PET-CT metabolic index for nasopharyngeal carcinoma, Journal of Cancer Research and Clinical Oncology, vol.62, issue.6, pp.883-889, 2010.
DOI : 10.1007/s00432-009-0729-7

T. Cazaentre, F. Morschhauser, and M. Vermandel, Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in

M. Hatt, C. Cheze-le-rest, and E. O. Aboagye, Reproducibility of 18F-FDG and 3'-Deoxy-3'-18F-Fluorothymidine PET Tumor Volume Measurements, Journal of Nuclear Medicine, vol.51, issue.9, pp.1368-1376, 2010.
DOI : 10.2967/jnumed.110.078501

URL : https://hal.archives-ouvertes.fr/inserm-00537774