U. Novak, A. Wilks, and G. Buell, Identical mRNA for preproglucagon in pancreas and gut, European Journal of Biochemistry, vol.14, issue.3, pp.553-558, 1987.
DOI : 10.1038/302716a0

S. Mojsov, G. Heinrich, and I. Wilson, Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing, J Biol Chem, vol.261, pp.11880-11889, 1986.

D. Drucker, S. Mojsov, and J. Habener, Cell-specific post-translational processing of preproglucagon expressed from a metallothionein-glucagon fusion gene, J Biol Chem, vol.261, pp.9637-9643, 1986.

J. Philippe, S. Mojsov, and D. Drucker, Proglucagon Processing in a Rat Islet Cell Line Resembles Phenotype of Intestine Rather than Pancreas*, Endocrinology, vol.119, issue.6, pp.2833-2839, 1986.
DOI : 10.1210/endo-119-6-2833

G. Jiang and B. Zhang, Glucagon and regulation of glucose metabolism, American Journal of Physiology - Endocrinology And Metabolism, vol.284, issue.4, pp.671-679, 2003.
DOI : 10.1152/ajpendo.00492.2002

M. Hussain, P. Daniel, and J. Habener, Glucagon stimulates expression of the inducible cAMP early repressor and suppresses insulin gene expression in pancreatic beta-cells, Diabetes, vol.49, issue.10, pp.1681-1690, 2000.
DOI : 10.2337/diabetes.49.10.1681

L. Baggio and D. Drucker, Biology of Incretins: GLP-1 and GIP, Gastroenterology, vol.132, issue.6, pp.2131-2157, 2007.
DOI : 10.1053/j.gastro.2007.03.054

C. Edwards, J. Todd, and M. Mahmoudi, Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39, Diabetes, vol.48, issue.1, pp.86-93, 1999.
DOI : 10.2337/diabetes.48.1.86

R. Pederson, M. Satkunarajah, and C. Mcintosh, Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor -/- mice, Diabetes, vol.47, issue.7, pp.1046-1052, 1998.
DOI : 10.2337/diabetes.47.7.1046

L. Scrocchi, T. Brown, and N. Maclusky, Glucose intolerance but normal satiety in mice with a null mutation in the glucagon???like peptide 1 receptor gene, Nature Medicine, vol.45, issue.11, pp.1254-1258, 1996.
DOI : 10.1016/0196-9781(92)90044-4

D. De-león, S. Deng, and R. Madani, Role of Endogenous Glucagon-Like Peptide-1 in Islet Regeneration After Partial Pancreatectomy, Diabetes, vol.52, issue.2, pp.365-371, 2003.
DOI : 10.2337/diabetes.52.2.365

E. Mannucci, A. Ognibene, and F. Cremasco, Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with Type 2 diabetes mellitus, Diabetic Medicine, vol.48, issue.10, pp.713-719, 2000.
DOI : 10.1046/j.1365-201X.1997.00161.x

T. Vilsbøll, T. Krarup, and C. Deacon, Reduced Postprandial Concentrations of Intact Biologically Active Glucagon-Like Peptide 1 in Type 2 Diabetic Patients, Diabetes, vol.50, issue.3, pp.609-613, 2001.
DOI : 10.2337/diabetes.50.3.609

M. Toft-nielsen, M. Damholt, and S. Madsbad, Determinants of the Impaired Secretion of Glucagon-Like Peptide-1 in Type 2 Diabetic Patients, The Journal of Clinical Endocrinology & Metabolism, vol.86, issue.8, pp.3717-3723, 2001.
DOI : 10.1210/jcem.86.8.7750

M. Nauck, F. Stöckmann, and R. Ebert, Reduced incretin effect in Type 2 (non-insulin-dependent) diabetes, Diabetologia, vol.24, issue.Suppl 82, pp.46-52, 1986.
DOI : 10.1007/BF02427280

D. Elahi, M. Mcaloon-dyke, and N. Fukagawa, The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7???37) in normal and diabetic subjects, Regulatory Peptides, vol.51, issue.1, pp.63-74, 1994.
DOI : 10.1016/0167-0115(94)90136-8

J. Meier, B. Gallwitz, and S. Salmen, Normalization of Glucose Concentrations and Deceleration of Gastric Emptying after Solid Meals during Intravenous Glucagon-Like Peptide 1 in Patients with Type 2 Diabetes, The Journal of Clinical Endocrinology & Metabolism, vol.88, issue.6, pp.2719-2725, 2003.
DOI : 10.1210/jc.2003-030049

D. Klonoff, J. Buse, and L. Nielsen, Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years, Current Medical Research and Opinion, vol.24, issue.1, pp.275-286, 2008.
DOI : 10.1185/030079908X253870

T. Jin and D. Drucker, The proglucagon gene upstream enhancer contains positive and negative domains important for tissue-specific proglucagon gene transcription., Molecular Endocrinology, vol.9, issue.10, pp.1306-1320, 1995.
DOI : 10.1210/mend.9.10.8544839

J. Holst, Glucagon and Glucagon-Like Peptides 1 and 2, Results Probl Cell Differ, vol.50, pp.121-135, 2010.
DOI : 10.1007/400_2009_35

C. Morel, M. Cordier-bussat, and P. J. , The upstream promoter element of the glucagon gene, G1, confers pancreatic alpha cell-specific expression, J Biol Chem, vol.270, pp.3046-3055, 1995.

J. Philippe, C. Morel, and M. Cordier-bussat, Islet-specific proteins interact with the insulin-response element of the glucagon gene, J Biol Chem, vol.270, pp.3039-3045, 1995.

M. Hill, S. Asa, and D. Drucker, 6 in Control of Enteroendocrine Proglucagon Gene Transcription, Molecular Endocrinology, vol.13, issue.9, pp.1474-1486, 1999.
DOI : 10.1210/mend.13.9.0340

J. Philippe, D. Drucker, and J. Habener, Glucagon gene transcription in an islet cell line is regulated via a protein kinase C-activated pathway, J Biol Chem, vol.262, pp.1823-1828, 1987.

D. Drucker and P. Brubaker, Proglucagon gene expression is regulated by a cyclic AMP-dependent pathway in rat intestine., Proceedings of the National Academy of Sciences, vol.86, issue.11, pp.3953-3957, 1989.
DOI : 10.1073/pnas.86.11.3953

Z. Ni, Y. Anini, and X. Fang, Transcriptional Activation of the Proglucagon Gene by Lithium and ??-Catenin in Intestinal Endocrine L Cells, Journal of Biological Chemistry, vol.278, issue.2, pp.1380-1387, 2003.
DOI : 10.1074/jbc.M206006200

F. Yi, P. Brubaker, and J. T. , TCF-4 Mediates Cell Type-specific Regulation of Proglucagon Gene Expression by ??-Catenin and Glycogen Synthase Kinase-3??, Journal of Biological Chemistry, vol.280, issue.2, pp.1457-1464, 2005.
DOI : 10.1074/jbc.M411487200

J. Wan, L. Jiang, and Q. Lü, Activation of PPAR?? up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic ??-cells, Biochemical and Biophysical Research Communications, vol.391, issue.3, pp.1567-1572, 2010.
DOI : 10.1016/j.bbrc.2009.12.127

B. Gross and B. Staels, PPAR agonists: multimodal drugs for the treatment of type-2 diabetes, Best Practice & Research Clinical Endocrinology & Metabolism, vol.21, issue.4, pp.687-710, 2007.
DOI : 10.1016/j.beem.2007.09.004

T. Coll, R. Rodrïguez-calvo, and E. Barroso, Peroxisome Proliferator-Activated Receptor (PPAR)?? /??: A New Potential Therapeutic Target for the Treatment of Metabolic Syndrome, Current Molecular Pharmacology, vol.2, issue.1, pp.46-55, 2009.
DOI : 10.2174/1874467210902010046

Y. Wang, C. Lee, and S. Tiep, Peroxisome-Proliferator-Activated Receptor ?? Activates Fat Metabolism to Prevent Obesity, Cell, vol.113, issue.2, pp.159-170, 2003.
DOI : 10.1016/S0092-8674(03)00269-1

URL : http://doi.org/10.1016/s0092-8674(03)00269-1

C. Lee, P. Olson, and A. Hevener, PPAR?? regulates glucose metabolism and insulin sensitivity, Proceedings of the National Academy of Sciences, vol.103, issue.9, pp.3444-3449, 2006.
DOI : 10.1073/pnas.0511253103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413918

I. Popescu, A. Helleboid-chapman, and A. Lucas, The nuclear receptor FXR is expressed in pancreatic ??-cells and protects human islets from lipotoxicity, FEBS Letters, vol.117, issue.13, pp.2845-2851, 2010.
DOI : 10.1016/j.febslet.2010.04.068

URL : https://hal.archives-ouvertes.fr/inserm-00485665

F. Lalloyer, B. Vandewalle, and F. Percevault, Peroxisome Proliferator-Activated Receptor ?? Improves Pancreatic Adaptation to Insulin Resistance in Obese Mice and Reduces Lipotoxicity in Human Islets, Diabetes, vol.55, issue.6, pp.1605-1613, 2006.
DOI : 10.2337/db06-0016

J. Peters, S. Lee, and W. Li, Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor beta (delta ), Molecular and Cellular Biology, vol.20, issue.14, pp.5119-5128, 2000.
DOI : 10.1128/MCB.20.14.5119-5128.2000

S. Katsuma, A. Hirasawa, and G. Tsujimoto, Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1, Biochemical and Biophysical Research Communications, vol.329, issue.1, pp.386-390, 2005.
DOI : 10.1016/j.bbrc.2005.01.139

H. Sato, C. Genet, and A. Strehle, Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea, Biochemical and Biophysical Research Communications, vol.362, issue.4, pp.793-798, 2007.
DOI : 10.1016/j.bbrc.2007.06.130

URL : https://hal.archives-ouvertes.fr/hal-00188900

C. Thomas, A. Gioiello, and L. Noriega, TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis, Cell Metabolism, vol.10, issue.3, pp.167-177, 2009.
DOI : 10.1016/j.cmet.2009.08.001

URL : https://hal.archives-ouvertes.fr/inserm-00420823

V. Korinek, N. Barker, and K. Willert, Two Members of the Tcf Family Implicated in Wnt/??-Catenin Signaling during Embryogenesis in the Mouse, Molecular and Cellular Biology, vol.18, issue.3, pp.1248-1256, 1998.
DOI : 10.1128/MCB.18.3.1248

D. Kim, M. Bility, and A. Billin, PPAR??/?? selectively induces differentiation and inhibits cell proliferation, Cell Death and Differentiation, vol.18, issue.1, pp.53-60, 2006.
DOI : 10.1074/jbc.M413808200

A. Chawla, C. Lee, and Y. Barak, PPAR?? is a very low-density lipoprotein sensor in macrophages, Proceedings of the National Academy of Sciences, vol.100, issue.3, pp.1268-1273, 2003.
DOI : 10.1073/pnas.0337331100

P. Brubaker, J. Schloos, and D. Drucker, Regulation of Glucagon-Like Peptide-1 Synthesis and Secretion in the GLUTag Enteroendocrine Cell Line, Endocrinology, vol.139, issue.10, pp.4108-4114, 1998.
DOI : 10.1210/en.139.10.4108

D. Drucker, J. T. Asa, and S. , Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line, Mol Endocrinol, vol.8, pp.1646-1655, 1994.

S. Schinner, C. Dellas, and M. Schroder, Repression of Glucagon Gene Transcription by Peroxisome Proliferator-activated Receptor ?? through Inhibition of Pax6 Transcriptional Activity, Journal of Biological Chemistry, vol.277, issue.3, pp.1941-1948, 2002.
DOI : 10.1074/jbc.M109718200

R. Krätzner, F. Fröhlich, and K. Lepler, A Peroxisome Proliferator-Activated Receptor ??-Retinoid X Receptor Heterodimer Physically Interacts with the Transcriptional Activator PAX6 to Inhibit Glucagon Gene Transcription, Molecular Pharmacology, vol.73, issue.2, pp.509-517, 2008.
DOI : 10.1124/mol.107.035568

H. Hui, A. Nourparvar, and X. Zhao, Glucagon-Like Peptide-1 Inhibits Apoptosis of Insulin-Secreting Cells via a Cyclic 5???-Adenosine Monophosphate-Dependent Protein Kinase A- and a Phosphatidylinositol 3-Kinase-Dependent Pathway, Endocrinology, vol.144, issue.4, pp.1444-1455, 2003.
DOI : 10.1210/en.2002-220897

J. Buteau, W. El-assaad, and C. Rhodes, Glucagon-like peptide-1 prevents beta cell glucolipotoxicity, Diabetologia, vol.47, pp.806-815, 2004.

C. Han, K. Lim, and L. Xu, ?? and PPAR??, Journal of Cellular Biochemistry, vol.283, issue.69, pp.534-545, 2008.
DOI : 10.1002/jcb.21852

M. Winzell, E. Wulff, and G. Olsen, Improved insulin sensitivity and islet function after PPAR?? activation in diabetic db/db mice, European Journal of Pharmacology, vol.626, issue.2-3, pp.297-305, 2010.
DOI : 10.1016/j.ejphar.2009.09.053

J. Tonelli, W. Li, and P. Kishore, Mechanisms of Early Insulin-Sensitizing Effects of Thiazolidinediones in Type 2 Diabetes, Diabetes, vol.53, issue.6, pp.1621-1629, 2004.
DOI : 10.2337/diabetes.53.6.1621

M. Schuler, F. Ali, and C. Chambon, PGC1?? expression is controlled in skeletal muscles by PPAR??, whose ablation results in fiber-type switching, obesity, and type 2 diabetes, Cell Metabolism, vol.4, issue.5, pp.407-414, 2006.
DOI : 10.1016/j.cmet.2006.10.003

Y. Wang, C. Zhang, and R. Yu, Regulation of Muscle Fiber Type and Running Endurance by PPAR??, PLoS Biology, vol.98, issue.10, p.294, 2004.
DOI : 10.1371/journal.pbio.0020294.sv002

Y. Yu, L. Liu, and X. Wang, Modulation of glucagon-like peptide-1 release by berberine: In vivo and in vitro studies, Biochemical Pharmacology, vol.79, issue.7, pp.1000-1006, 2010.
DOI : 10.1016/j.bcp.2009.11.017

. Gene, Transfected GLUTag L cells were cultured 24h in 96 well plates before treatment with PPAR?/? agonists (GW501516 and GW0742) at 1µM during 16h in serum free medium and then lysed by addition of ¼ v/v of Luciferase Assay Reagent II (Dual-Luciferase TM , Promega) Relative Luc activities were calculated as ?fold induction relative to control GLUTag cell transfected with empty plasmid

M. Sznaidman, C. Haffner, and P. Maloney, Novel selective small molecule agonists for peroxisome proliferator-activated receptor ?? (PPAR??)???synthesis and biological activity, Bioorganic & Medicinal Chemistry Letters, vol.13, issue.9, pp.1517-1521, 2003.
DOI : 10.1016/S0960-894X(03)00207-5

W. Oliver, J. Shenk, and M. Snaith, A selective peroxisome proliferator-activated receptor ?? agonist promotes reverse cholesterol transport, Proceedings of the National Academy of Sciences, vol.98, issue.9, pp.5306-5311, 2001.
DOI : 10.1073/pnas.091021198

I. Popescu, A. Helleboid-chapman, and A. Lucas, The nuclear receptor FXR is expressed in pancreatic ??-cells and protects human islets from lipotoxicity, FEBS Letters, vol.117, issue.13, pp.2845-2851, 2010.
DOI : 10.1016/j.febslet.2010.04.068

URL : https://hal.archives-ouvertes.fr/inserm-00485665