V. References, Whole-animal imaging: The whole picture, Micro-CT in small animal and specimen imaging, pp.977-980, 2002.

P. J. Cassidy and G. K. Radda, Molecular imaging perspectives, Journal of The Royal Society Interface, vol.2, issue.3, pp.133-144, 2005.
DOI : 10.1098/rsif.2005.0040

A. Louie, Design and Characterization of Magnetic Resonance Imaging Gene Reporters, Methods Mol Med, vol.124, pp.401-417, 2006.
DOI : 10.1385/1-59745-010-3:401

]. T. Barrett, H. Kobayashi, M. Brechbiel, and P. L. Choyke, Macromolecular MRI contrast agents for imaging tumor angiogenesis, European Journal of Radiology, vol.60, issue.3, pp.353-366, 2006.
DOI : 10.1016/j.ejrad.2006.06.025

M. Beaumont, B. Lemasson, R. Farion, C. Segebarth, C. Remy et al., Characterization of Tumor Angiogenesis in Rat Brain Using Iron-Based Vessel Size Index MRI in Combination with Gadolinium-Based Dynamic Contrast-Enhanced MRI, Journal of Cerebral Blood Flow & Metabolism, vol.10, issue.10, pp.1714-1726, 2009.
DOI : 10.1002/nbm.881

URL : https://hal.archives-ouvertes.fr/inserm-00410316

]. C. Cuenod, L. Fournier, D. Balvay, and J. M. Guinebretiere, Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment, Abdominal Imaging, vol.74, issue.2, pp.31-188, 2006.
DOI : 10.1007/s00261-005-0386-5

URL : https://hal.archives-ouvertes.fr/inserm-00147472

M. Farquhar, M. E. Pedarsani, and . Phelps, Performance evaluation of microPET: a highresolution lutetium oxyorthosilicate PET scanner for animal imaging, J Nucl Med, vol.40, pp.1164-1175, 1999.

D. K. Welsh and S. A. Kay, Bioluminescence imaging in living organisms, Current Opinion in Biotechnology, vol.16, issue.1, pp.73-78, 2005.
DOI : 10.1016/j.copbio.2004.12.006

C. Bremer, V. Ntziachristos, and R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications, Eur Radiol, vol.13, pp.231-243, 2003.

M. Kéramidas, V. Josserand, C. A. Righini, C. Wenk, C. Faure et al., Intraoperative near-infrared image-guided surgery of peritoneal carcinomatosis in a preclinical mouse model, 2010.

S. L. Troyan, V. Kianzad, S. L. Gibbs-strauss, S. Gioux, A. Matsui et al., The FLARE??? Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping, Annals of Surgical Oncology, vol.196, issue.10, 2009.
DOI : 10.1245/s10434-009-0594-2

A. Nakayama, F. Del-monte, R. J. Hajjar, and J. V. Frangioni, Functional Near-Infrared Imaging for Cardiac Surgery and Targeted Gene Therapy, Molecular Imaging, vol.1, issue.4, pp.365-377, 2002.
DOI : 10.1162/153535002321093972

J. V. Frangioni, New Technologies for Human Cancer Imaging, Journal of Clinical Oncology, vol.26, issue.24, pp.4012-4021, 2008.
DOI : 10.1200/JCO.2007.14.3065

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, In Vivo Tomographic Imaging of Near-Infrared Fluorescent Probes, Molecular Imaging, vol.1, issue.2, pp.82-88, 2002.
DOI : 10.1162/153535002320162732

J. L. Peltie, P. Coll, and . Rizo, In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography, J Biomed Opt, vol.13, p.11008, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00313764

A. Da-silva, J. M. Dinten, J. L. Coll, and P. Rizo, From bench-top small animal diffuse optical tomography towards clinical imaging, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.526-529, 2007.
DOI : 10.1109/IEMBS.2007.4352343

URL : https://hal.archives-ouvertes.fr/inserm-00333252

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, Fluorescence molecular tomography resolves protease activity in vivo, Nature Medicine, vol.8, issue.7, pp.757-760, 2002.
DOI : 10.1038/nm729

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, Tomographic Fluorescence Mapping of Tumor Targets, Cancer Research, vol.65, issue.14, pp.6330-6336, 2005.
DOI : 10.1158/0008-5472.CAN-05-0382

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie et al., Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis, Journal of Biomedical Optics, vol.14, issue.6, p.64001, 2009.
DOI : 10.1117/1.3257236

URL : https://hal.archives-ouvertes.fr/hal-00443168

R. Weissleder and V. Ntziachristos, Shedding light onto live molecular targets, Nature Medicine, vol.1, issue.1, pp.123-128, 2003.
DOI : 10.1016/S1074-7613(02)00275-3

M. Longmire, N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer, Cancer Science, vol.39, issue.6, pp.1099-1104, 2009.
DOI : 10.1111/j.1349-7006.2009.01133.x

M. Ogawa, C. A. Regino, P. L. Choyke, and H. Kobayashi, In vivo target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies, Molecular Cancer Therapeutics, vol.8, issue.1, pp.232-239, 2009.
DOI : 10.1158/1535-7163.MCT-08-0862

M. Ogawa, N. Kosaka, P. L. Choyke, and H. Kobayashi, In vivo Molecular Imaging of Cancer with a Quenching Near-Infrared Fluorescent Probe Using Conjugates of Monoclonal Antibodies and Indocyanine Green, Cancer Research, vol.69, issue.4, pp.69-1268, 2009.
DOI : 10.1158/0008-5472.CAN-08-3116

X. Chen, P. S. Conti, and R. A. Moats, In vivo Near-Infrared Fluorescence Imaging of Integrin ??v??3 in Brain Tumor Xenografts, Cancer Research, vol.64, issue.21, pp.8009-8014, 2004.
DOI : 10.1158/0008-5472.CAN-04-1956

X. Chen, E. Sievers, Y. Hou, R. Park, M. Tohme et al., Integrin ????3-Targeted Imaging of Lung Cancer, Neoplasia, vol.7, issue.3, pp.271-279, 2005.
DOI : 10.1593/neo.04538

T. Sato, K. Konishi, H. Kimura, K. Maeda, K. Yabushita et al., Vascular integrin beta 3 and its relation to pulmonary metastasis of colorectal carcinoma, Anticancer Res, vol.21, pp.643-647, 2001.

K. R. Gehlsen, G. E. Davis, and P. Sriramarao, Integrin expression in human melanoma cells with differing invasive and metastatic properties, Clinical & Experimental Metastasis, vol.109, issue.2, pp.111-120, 1992.
DOI : 10.1007/BF00114587

M. J. Ruoslahti and . Hendrix, Role of the alpha v beta 3 integrin in human melanoma cell invasion, Proc Natl Acad Sci U S A, vol.89, pp.1557-1561, 1992.

C. L. Gladson and D. A. Cheresh, Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells., Journal of Clinical Investigation, vol.88, issue.6, pp.1924-1932, 1991.
DOI : 10.1172/JCI115516

M. Rolli, E. Fransvea, J. Pilch, A. Saven, and B. , Activated integrin ??v??3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9482-9487, 2003.
DOI : 10.1073/pnas.1633689100

D. Heckmann, A. Meyer, L. Marinelli, G. Zahn, R. Stragies et al., Probing integrin selectivity: rational design of highly active and selective ligands for the 22

D. Boturyn, J. L. Coll, E. Garanger, M. C. Favrot, and P. Dumy, Template Assembled Cyclopeptides as Multimeric System for Integrin Targeting and Endocytosis, Journal of the American Chemical Society, vol.126, issue.18, pp.5730-5739, 2004.
DOI : 10.1021/ja049926n

C. Boturyn, A. Souchier, P. Grichine, and J. Dumy, Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide, Mol Ther, vol.17, pp.837-843, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00369024

Z. H. Jin, V. Josserand, S. Foillard, D. Boturyn, P. Dumy et al., In vivo optical imaging of integrin ??V-??3 in mice using multivalent or monovalent cRGD targeting vectors, Molecular Cancer, vol.6, issue.1, p.41, 2007.
DOI : 10.1186/1476-4598-6-41

Z. H. Jin, V. Josserand, J. Razkin, E. Garanger, D. Boturyn et al., Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c, Mol Imaging, vol.4, issue.5, pp.188-197, 2006.

D. Dumy, C. Fagret, J. P. Ghezzi, and . Vuillez, In vivo imaging of tumour angiogenesis in mice with the alpha(v)beta (3) integrin-targeted tracer 99mTc-RAFT-RGD, Eur J Nucl Med Mol Imaging, vol.34, pp.2037-2047, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00176669

S. Faure, S. Foillard, D. Roux, O. Boturyn, A. Tillement et al., Drug development in oncology assisted by noninvasive optical imaging, Int. J. Pharm, pp.379-309, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00390608

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel et al., In Vivo Near-Infrared Fluorescence Imaging of Integrin ??v??3 in an Orthotopic Glioblastoma Model, Molecular Imaging and Biology, vol.52, issue.4, pp.315-323, 2006.
DOI : 10.1007/s11307-006-0059-y

. Coffey, Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer, Clin Cancer Res, vol.14, pp.7413-7422, 2008.

E. L. Rosenthal, B. D. Kulbersh, T. King, T. R. Chaudhuri, and K. R. Zinn, Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts, Molecular Cancer Therapeutics, vol.6, issue.4, pp.1230-1238, 2007.
DOI : 10.1158/1535-7163.MCT-06-0741

S. B. Raymond, J. Skoch, I. D. Hills, E. E. Nesterov, T. M. Swager et al., Smart optical probes for near-infrared fluorescence imaging of Alzheimer???s disease pathology, European Journal of Nuclear Medicine and Molecular Imaging, vol.158, issue.3, pp.93-98, 2008.
DOI : 10.1007/s00259-007-0708-7

M. C. Pierce, D. J. Javier, and R. Richards-kortum, Optical contrast agents and imaging systems for detection and diagnosis of cancer, International Journal of Cancer, vol.24, issue.Part 2, pp.1979-1990, 2008.
DOI : 10.1002/ijc.23858

H. Choyke and . Kobayashi, Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection, Bioconjug Chem, vol.20, pp.2177-2184, 2009.

D. R. Elias, D. L. Thorek, A. K. Chen, J. Czupryna, and A. Tsourkas, In vivo imaging of cancer biomarkers using activatable molecular probes, Cancer Biomarkers, vol.4, issue.6, pp.287-305, 2008.
DOI : 10.3233/CBM-2008-4602

C. Bremer, V. Ntziachristos, and R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications, Eur Radiol, vol.13, pp.231-243, 2003.

J. L. Figueiredo, H. Alencar, R. Weissleder, and U. Mahmood, Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer, International Journal of Cancer, vol.75, issue.11, pp.2672-2677, 2006.
DOI : 10.1002/ijc.21713

G. Blum, G. Von-degenfeld, M. J. Merchant, H. M. Blau, and M. Bogyo, Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes, Nature Chemical Biology, vol.1, issue.10, pp.668-677, 2007.
DOI : 10.1038/nchembio.2007.26

F. Zhou, D. Xing, S. Wu, and W. R. Chen, Intravital Imaging of Tumor Apoptosis with FRET Probes During Tumor Therapy, Molecular Imaging and Biology, vol.11, issue.13, 2009.
DOI : 10.1007/s11307-009-0235-y

A. Sierra, Animal models of breast cancer for the study of pathogenesis and therapeutic insights, Clinical and Translational Oncology, vol.5, issue.11, pp.721-727, 2009.
DOI : 10.1007/s12094-009-0434-7

J. Ripoll, V. Ntziachristos, C. Cannet, A. L. Babin, R. Kneuer et al., Investigating Pharmacology In Vivo Using Magnetic Resonance and Optical Imaging, Drugs in R & D, vol.34, issue.7, pp.277-306, 2008.
DOI : 10.2165/00126839-200809050-00001

D. A. Torigian, S. S. Huang, M. Houseni, and A. Alavi, Functional Imaging of Cancer with Emphasis on Molecular Techniques, CA: A Cancer Journal for Clinicians, vol.57, issue.4, pp.206-224, 2007.
DOI : 10.3322/canjclin.57.4.206

R. L. Scherer, M. N. Vansaun, J. O. Mcintyre, and L. M. Matrisian, Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon, Mol Imaging, vol.7, pp.118-131, 2008.

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, and J. , In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nature Biotechnology, vol.16, issue.4, pp.375-378, 1999.
DOI : 10.1038/7933

M. Nahrendorf, D. E. Sosnovik, P. Waterman, F. K. Swirski, A. N. Pande et al., Dual Channel Optical Tomographic Imaging of Leukocyte Recruitment and Protease Activity in the Healing Myocardial Infarct, Circulation Research, vol.100, issue.8, pp.1218-1225, 2007.
DOI : 10.1161/01.RES.0000265064.46075.31

H. Zhang, D. Morgan, G. Cecil, A. Burkholder, N. Ramocki et al., Biochromoendoscopy: molecular imaging with capsule endoscopy for detection of adenomas of the GI tract, Gastrointestinal Endoscopy, vol.68, issue.3, pp.68-520, 2008.
DOI : 10.1016/j.gie.2008.02.023

D. Stanley, Piwnica-Worms, Biochemical and in vivo characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis, Biochemistry, vol.46, pp.4055-4065, 2007.

L. E. Edgington, A. B. Berger, G. Blum, V. E. Albrow, M. G. Paulick et al., Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes, Nature Medicine, vol.3, issue.8, pp.15-967, 2009.
DOI : 10.1038/nm.1938

W. Li, F. Li, Q. Huang, B. Frederick, S. Bao et al., Noninvasive Imaging and Quantification of Epidermal Growth Factor Receptor Kinase Activation In vivo, Cancer Research, vol.68, issue.13, pp.68-4990, 2008.
DOI : 10.1158/0008-5472.CAN-07-5984

A. Watanabe, P. L. Hasegawa, H. Choyke, and . Kobayashi, Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes, Nat Med, vol.15, pp.104-109, 2009.

S. Foillard, L. Sancey, J. L. Coll, D. Boturyn, and P. Dumy, Targeted delivery of activatable fluorescent pro-apoptotic peptide into live cells, Org. Biomol. Chem., vol.42, issue.2, pp.221-224, 2009.
DOI : 10.1039/B817251J

Z. H. Jin, J. Razkin, V. Josserand, D. Boturyn, A. Grichine et al., In vivo noninvasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c, Mol Imaging, vol.6, issue.4, pp.43-55, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00313766

J. Razkin, V. Josserand, D. Boturyn, Z. H. Jin, P. Dumy et al., Activatable Fluorescent Probes for Tumour-Targeting Imaging in Live Mice, ChemMedChem, vol.5704, issue.10, pp.1069-1072, 2006.
DOI : 10.1002/cmdc.200600118

URL : https://hal.archives-ouvertes.fr/inserm-00176684

I. Texier-nogues, J. Razkin, V. Josserand, D. Boturyn, P. Dumy et al., Activatable probes for non-invasive small animal fluorescence imaging, Nuclear Inst. and Methods in Physics Research A A, pp.165-168, 2007.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou et al., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science, vol.298, issue.5599, pp.1759-1762, 2002.
DOI : 10.1126/science.1077194

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotechnology, vol.13, issue.8, pp.969-976, 2004.
DOI : 10.1006/bbrc.1995.2373

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De-grand, J. Lee et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature Biotechnology, vol.22, issue.1, pp.93-97, 2004.
DOI : 10.1038/nbt920

. Frangioni, Sentinel lymph node mapping of the pleural space, Chest, vol.127, pp.1799-1804, 2005.

C. P. Parungo, S. Ohnishi, S. W. Kim, S. Kim, R. G. Laurence et al., Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging, The Journal of Thoracic and Cardiovascular Surgery, vol.129, issue.4, pp.844-850, 2005.
DOI : 10.1016/j.jtcvs.2004.08.001

B. Ballou, L. A. Ernst, S. Andreko, T. Harper, J. A. Fitzpatrick et al., Sentinel Lymph Node Imaging Using Quantum Dots in Mouse Tumor Models, Bioconjugate Chemistry, vol.18, issue.2, pp.389-396, 2007.
DOI : 10.1021/bc060261j

W. Cai and X. Chen, Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging, Nature Protocols, vol.17, issue.1, pp.89-96, 2008.
DOI : 10.1038/nprot.2007.478

H. Kobayashi, M. Ogawa, N. Kosaka, P. L. Choyke, and Y. Urano, Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents, Nanomedicine, vol.4, issue.4, pp.411-419, 2009.
DOI : 10.2217/nnm.09.15

L. A. Bentolila, Y. Ebensteinn, and S. Weiss, Quantum Dots for In Vivo Small-Animal Imaging, Journal of Nuclear Medicine, vol.50, issue.4, pp.493-496, 2009.
DOI : 10.2967/jnumed.108.053561

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier et al., Towards non-blinking colloidal quantum??dots, Nature Materials, vol.85, issue.8, pp.659-664, 2008.
DOI : 10.1038/nmat2222

O. Carion, B. Mahler, T. Pons, and B. , Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging, Nature Protocols, vol.105, issue.10, pp.2383-2390, 2007.
DOI : 10.1038/nprot.2007.351

A. Papagiannaros, T. Levchenko, W. Hartner, D. Mongayt, and V. Torchilin, Quantum dots encapsulated in phospholipid micelles for imaging and quantification of tumors in the near-infrared region, Nanomedicine: Nanotechnology, Biology and Medicine, vol.5, issue.2, pp.216-224, 2009.
DOI : 10.1016/j.nano.2008.10.001

M. Coghlan, R. Follen, K. Richards-kortum, and . Sokolov, Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo, J Biomed Opt, vol.12, pp.34007-34034, 2007.

P. Puvanakrishnan, J. Park, P. Diagaradjane, J. A. Schwartz, C. L. Coleman et al., Near-infrared narrow-band imaging of gold/silica nanoshells in tumors, Journal of Biomedical Optics, vol.14, issue.2, p.24044, 2009.
DOI : 10.1117/1.3120494

A. C. Faure, S. Dufort, V. Josserand, P. Perriat, J. L. Coll et al., Control of the in vivo Biodistribution of Hybrid Nanoparticles with Different Poly(ethylene glycol) Coatings, Small, vol.6, issue.22, pp.2565-2575, 2009.
DOI : 10.1002/smll.200900563

C. Chen, J. Peng, H. S. Xia, G. F. Yang, Q. S. Wu et al., Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer, Biomaterials, vol.30, issue.15, pp.2912-2918, 2009.
DOI : 10.1016/j.biomaterials.2009.02.010

C. Yang, N. Ding, Y. Xu, X. Qu, J. Zhang et al., Folate receptor???targeted quantum dot liposomes as fluorescence probes, Journal of Drug Targeting, vol.18, issue.7, pp.502-511, 2009.
DOI : 10.1016/j.apsusc.2008.09.009

C. H. Yang, S. H. Yang, and C. S. Hsu, Solution-processable phosphorescent to organic light-emitting diodes based on chromophoric amphiphile/silica nanocomposite, Nanotechnology, vol.20, issue.31, p.315601, 2009.
DOI : 10.1088/0957-4484/20/31/315601

A. A. Burns, J. Vider, H. Ow, E. Herz, O. Penate-medina et al., Fluorescent Silica Nanoparticles with Efficient Urinary Excretion for Nanomedicine, Nano Letters, vol.9, issue.1, pp.442-448, 2009.
DOI : 10.1021/nl803405h

I. Texier, M. Goutayer, A. Da-silva, L. Guyon, N. Djaker et al., Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging, Journal of Biomedical Optics, vol.14, issue.5, p.54005, 2009.
DOI : 10.1117/1.3213606

K. C. Weng, C. O. Noble, B. Papahadjopoulos-sternberg, F. F. Chen, D. C. Drummond et al., Targeted Tumor Cell Internalization and Imaging of Multifunctional Quantum Dot-Conjugated Immunoliposomes in Vitro and in Vivo, Nano Letters, vol.8, issue.9, pp.2851-2857, 2008.
DOI : 10.1021/nl801488u

D. Guillaudeu, C. J. Abendschein, M. J. Anderson, J. M. Welch, and . Frechet, Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis, Proc Natl Acad Sci U S A, vol.106, pp.685-690, 2009.

C. Duan, C. A. Ni, W. C. Staley, X. Wood, S. Gao et al., Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles, Gastroenterology, vol.136, pp.1514-1525, 2009.

J. H. Park, L. Gu, G. Von-maltzahn, E. Ruoslahti, S. N. Bhatia et al., Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nature Materials, vol.15, issue.4, pp.331-336, 2009.
DOI : 10.1038/nmat2398

E. Pic, T. Pons, L. Bezdetnaya, A. Leroux, F. Guillemin et al., Fluorescence Imaging and Whole-Body Biodistribution of Near-Infrared-Emitting Quantum Dots after Subcutaneous Injection for Regional Lymph Node Mapping in Mice, Molecular Imaging and Biology, vol.35, issue.2, 2009.
DOI : 10.1007/s11307-009-0288-y

URL : https://hal.archives-ouvertes.fr/hal-00437294

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, Noninvasive Imaging of Quantum Dots in Mice, Bioconjugate Chemistry, vol.15, issue.1, pp.79-86, 2004.
DOI : 10.1021/bc034153y

. Gambhir, Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice, pp.126-134, 2009.

H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, Journal of Controlled Release, vol.65, issue.1-2, pp.271-284, 2000.
DOI : 10.1016/S0168-3659(99)00248-5

S. Y. Choi, R. W. Jeong, I. S. Park, K. Kim, I. C. Kim et al., Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice, J Control Release, vol.127, pp.41-49, 2008.

K. Jeong, I. C. Kim, and . Kwon, Hydrophobically modified glycol chitosan nanoparticlesencapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy, J Control Release, vol.127, pp.208-218, 2008.

G. Saravanakumar, K. H. Min, D. S. Min, A. Y. Kim, C. M. Lee et al., Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: Synthesis, characterization, and in vivo biodistribution, Journal of Controlled Release, vol.140, issue.3, pp.210-217, 2009.
DOI : 10.1016/j.jconrel.2009.06.015

K. Chen, J. Xie, H. Xu, D. Behera, M. H. Michalski et al., Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting, Biomaterials, vol.30, issue.36, pp.6912-6919, 2009.
DOI : 10.1016/j.biomaterials.2009.08.045

H. Lee, K. Lee, I. K. Kim, and T. G. Park, Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes, Biomaterials, vol.29, issue.35, pp.4709-4718, 2008.
DOI : 10.1016/j.biomaterials.2008.08.038

X. Wood, S. Gao, H. Nie, and . Mao, Receptor-targeted nanoparticles for in vivo imaging of breast cancer, Clin Cancer Res, vol.15, pp.4722-4732, 2009.

Z. Medarova, L. Rashkovetsky, P. Pantazopoulos, and A. Moore, Multiparametric Monitoring of Tumor Response to Chemotherapy by Noninvasive Imaging, Cancer Research, vol.69, issue.3, pp.1182-1189, 2009.
DOI : 10.1158/0008-5472.CAN-08-2001

Z. Medarova, M. Kumar, S. W. Ng, and A. Moore, Development and Application of a Dual-Purpose Nanoparticle Platform for Delivery and Imaging of siRNA in Tumors, Methods Mol Biol, vol.555, pp.1-13, 2009.
DOI : 10.1007/978-1-60327-295-7_1