Risedronate and alendronate suppress osteocyte apoptosis following cyclic fatigue loading.
Hélène Follet, Jiliang Li, Roger Phipps, Siu Hui, Keith Condon, David Burr

To cite this version:

HAL Id: inserm-00557225
http://www.hal.inserm.fr/inserm-00557225
Submitted on 15 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography

H. Folleta,*\textbf{,} F. Peyrinb,c, E. Vidal-Sallea, A. Bonnassieb, C. Rumelharta, P.J. Meunierd

aLaboratoire de M\'ecanique des Contacts et des Solides (LaMCoS) UMR CNRS 5514, INSA, Bât Coulomb, Lyon, France
bCREATIS, UMR CNRS 5515, Bât. Blaise Pascal, INSA, Lyon, France
cESRF, BP 220, 38043 Grenoble Cedex, France
dLaboratoire d’Histodynamique Osseuse, INSERM U403, Lyon, France

Accepted 24 October 2006

Abstract

To determine intrinsic mechanical properties (elastic and failure) of trabecular calcaneus bone, chosen as a good predictor of hip fracture, we looked for the influence of image’s size on a numerical simulation. One cubic sample of cancellous bone (9×9×9 mm3) was removed from the body of the calcaneus (6 females, 6 males, 79±9 yr). These samples were tested under compressive loading. Before compressive testing, these samples were imaged at 10.13 μm resolution using a 3D microcomputed tomography (μCT) (ESRF, France). The μCT images were converted to finite-element models. Depending on the bone density values (BV/TV), we compared two different finite element models: a linear hexahedral and a linear beam finite element models. Apparent experimental Young’s modulus (\(E_{\text{exp}}^\text{app}\)) and maximum apparent experimental compressive stress (\(\sigma_{\text{exp}}^\text{max}\)) were significantly correlated with bone density obtained by Archimedes’s test (\(E_{\text{exp}}^\text{app} = 236 ± 231\) MPa [19–742 MPa], \(\sigma_{\text{exp}}^\text{max} = 2.61 ± 1.97\) MPa [0.28–5.81 MPa], \(r > 0.80, p < 0.001\)). Under threshold at 40 μm, the size of the numerical samples (5.183 and 6.683 mm3) seems to be an important parameter on the accuracy of the results. The numerical trabecular Young’s modulus was widely higher (\(E_{\text{num-trabecular}} = 34,182 ± 22,830\) MPa [9700–87,211 MPa]) for the larger numerical samples and high BV/TV than those found classically by other techniques (4700–15,000 MPa). For rod-like bone samples (BV/TV < 12%, \(n = 7\)), Young’s modulus, using linear beam element (\(E_{\text{num-skeleton}} = 10,305 ± 5500\) MPa), were closer to the Young’s modulus found by other techniques. Those results show the limitation of hexahedral finite elements at 40 μm, mostly used, for thin trabecular structures.

Keywords: Microcomputed tomography (μCT); Finite-element models; Biomechanical strength; Trabecular bone; Calcaneus

1. Introduction

To predict if a bone will break is a tremendous challenge. In the near future, the clinical examinations associated to the numerical simulations from clinical scanners will certainly be used to predict the bone fracture risk. But, before that, clinical numerical simulations need to be adjusted depending on the bone quality (plate/rod-like trabecular bone) and accurate comparing to the bone size.

In clinical routine, computed tomography (CT) allows nondestructive imaging of two-dimensional (2D) transverse slices of human anatomy but their resolution (300 μm) is insufficient for imaging thin structures such as trabecular bone architecture (~100 μm). In the past, several investigators have tried to establish relationships that could predict bone mechanical properties from measurement of bone density and architectural features (Cowin, 1985; Goulet et al., 1994; Hollister et al., 1994; Turner et al., 1990). In these studies, the mechanical properties of sample trabecular bone cubes were determined from compression tests. Van Rietbergen et al. used models that describe the trabecular structure, and used three-dimensional (3D) serial reconstruction techniques to construct a large-scale finite-element (FE) model, by directly converting voxels to...
elements (Van Rietbergen et al., 1995, 1996, 1997a, b, 1998). Yeh et al. investigated a 3D FE parameter study (beam type FE) that simulated variations in trabecular thickness (either 25%, 40%, or 55%) applied to an irregularly spaced lattice of different sized rods (Yeh and Keaveny, 1999). Keaveny et al. suggested the use of high-resolution microstructural FE models (Keaveny et al., 1993, 2001, Niebur et al., 2001). Niebur et al. also used high-resolution (40 μm) FE models for trabecular bone failure to increase the accuracy of current techniques to measure damage in trabecular bone (Niebur et al., 2001). Using quantitative computed tomography (QCT), Kopperdahl et al. obtained density–mechanical property regressions for trabecular bone and used them in biomechanical modeling of the human spine (Kopperdahl et al., 2002). Crawford et al. investigated the numerical convergence characteristics of specimen-specific “voxel-based” FE models of 14 excised human cadaver lumbar vertebral bodies that were generated automatically from clinical-type CT scans (Crawford et al., 2003a).

The aim of this study was (1) to determine intrinsic hard tissue mechanical properties for trabecular calcaneus bone, (2) to show if the 5 mm-side criterion is an enough criterion to estimate the mechanical properties of trabecular bone, (3) to show the limitation of hexahedral FE at 40 μm, when used for thin trabecular structures, via two different microcomputed tomography (μCT)-based FE models (hexahedral and beam) and compressive testing, (4) to show that the type of element (plate/rod-like bone) has to be taken account in the future simulation. In our knowledge, unlike previously published work (Van Rietbergen et al., 1995), the comparison between different FE models and size associated to an experimental design on calcaneus have not been done.

2. Material and methods

2.1. Material and protocol

Calcanei were excised at autopsy from 12 subjects (6 females, 6 males) aged 61–91 yr (mean 79 ± 9 yr). Conventional radiographs (X-rays) were first taken to exclude bones with disease and to identify the superior network of the trabecular bone (Figs. 1(a) and (b)) (Gefen and Seliktar, 2004; Kapandji, 1994; Putz and Pabst, 1994). One cubic sample (9 mm/side) oriented along the superior trabecular network was cut out from the calcaneus using a low speed diamond water saw (Buehler, Isomet®, Fig. 1(c)). First, the frozen samples were imaged using 3D μCT imaging to obtain 3D and 2D morphometric parameters (Figs. 1(c) and 2(a)). Then, they were used for compressive tests. Between machining and mechanical testing, samples were kept frozen and, before mechanical testing, they were placed in a 50% saline–ethanol solution for 3 d at 4 °C for defrosting and at ambient temperature for 2–4 h (Ashman et al., 1984). After compressive testing, the cubic samples were defatted to measure apparent and tissue densities.

2.2. 3D synchrotron radiation μCT imaging

3D high-resolution tomographic images were acquired at the ESRF (Grenoble, France) which provides 3D images at very high spatial resolution with a high signal to noise ratio within a limited acquisition time (Salome et al., 1999). Image acquisition was performed using a monochromatic x-ray beam fixed to 25 keV. For each sample, 900 radiographic images (1024 × 1024), under different angles of view, were recorded. The spatial resolution in the recorded images was set to 10.13 μm, which has been previously shown to provide an accurate rendering of bone architecture while maintaining a significant field of view (10 × 10 × 10 mm³) (Peyrin et al., 1998, 2000). The 3D images were then obtained by applying an exact tomographic reconstruction algorithm, based on filtered back-projection. The voxel size in the reconstructed images was 10 × 10 × 10 μm³. A centered 3D region of interest (ROI) made of (660)³ voxels (6.6³mm³) was selected in each sample for performing the 3D architectural analysis.

2.3. 3D analysis

Due to the high contrast and low noise level, the 3D images were easily segmented using simple threshold. After segmentation, 3D architectural parameters, similar to those used in histomorphometry, were computed from the 3D binary images including a 3D version of the mean intercept length (MIL) method (Compton et al., 1993; Simmons and Hipp, 1997), partial bone volume (BV/TV in %), direct trabecular thickness (TbTh in mm), trabecular number (TbN in mm⁻¹), and trabecular separation (TbSp in mm). For computing skeletons, we used a method based on thinning where the object boundary is sequentially removed under some conditions, which guarantees the preservation of the topology (Lee et al., 1994; Thovert et al., 1993). The method was applied to rod-like bones and provided a line skeleton. In order to reduce artifacts, parasitic branches over a certain length were suppressed. Examples of typical rod-like or plate-like bones obtained from 3D μCT and their 3D skeletons are presented in Figs. 2(a) and (b).

2.4. Compressive tests

As previously published (Cendre et al., 1999; Follet et al., 2005) unconstrained compressive testing was performed on calcaneus trabecular specimens (cube of 9 × 9 × 9 mm³, Schenck RSA 250, Fig. 3). The compressive load was measured by a 2000 N load cell (TME®, F 501 TC, accuracy 0.1%) and a specific displacement was measured directly on the sample (transducer developed at LaMCoS, Cendre et al., 1999; Mitton et al., 1998). Samples were placed in a saline solution at 37 °C.
All tests were performed at a displacement speed of 0.5 mm/min and preceded by 10 cycles of preloading. Preloading and nondestructive compression were limited to 0.5% of strain and performed successively in three orthogonal directions: the anteroposterior direction (X-axis), the mediolateral direction (Y-axis) and the superior direction (Z-axis), determined by radiographs. The experimental apparent Young’s moduli \(E_{\text{app}}^{(x)} \), \(E_{\text{app}}^{(y)} \), \(E_{\text{app}}^{(z)} \) were calculated considering the apparent sections of the cubic sample and the linear part of the force–displacement curves in the elastic region. After that, a destructive test was carried out in the Z direction. The apparent Young’s modulus \(E_{\text{app}}^{(z)} \) and the apparent maximum compressive stress \(\sigma_{\text{exp max}}^{(z)} \) were evaluated from the force–displacement curve, considering the apparent section of the sample. According to the ASTM, the apparent Young’s modulus was determined from the linear portion of the stress–strain curve. Two data points were chosen on the linear portion of the curve by inspection and a linear regression was performed on the data between the chosen points. If the \(r^2 \) values were less than 0.99 for the resulting regression, two other points were chosen and the process was repeated (ASTM, 1992).

2.5. Density

After mechanical testing, cubic samples were defatted by chemical action (48 h toluene) followed by both chemical and mechanical actions (ultrasonic stirring in a 2% chlorine bath). Dehydration was obtained by drying for 24 h in air at room temperature. Particular care was taken to prevent air being trapped in marrow cavities. A centrifugation was used to remove air from the specimens. Apparent density \(\rho_{\text{app}} \), tissue density \(\rho_{\text{tissue}} \) and bone volume estimated by Archimedes principle \(\rho_{\text{app}}/\rho_{\text{tissue}} \) were defined (see Appendix).

2.6. FE models

FE models were built using \(\mu \)CT volume of cubic sample. Due to the high resolution on the \(\mu \)CT volume of cubic...
samples (10.13 μm), all these volumes were under threshold at 40 μm to build FE models. This step was required because using high resolution (10.13 μm) increases the number of equations to be solved by 64 times. FE models of trabecular cubic samples of calcaneus were created by converting each bone voxel to a FE (Fig. 4). Most of these simulations were done at CINES (Montpellier, France), with one SGI ORIGIN 3800, with a scientific FE code Abaqus/Standard 6.2.

Hexahedral models (8 nodes) with two different sizes were built and simulated: 1st—128 voxels per side (5.18 mm side, 140 mm³, \(n = 12 \)), 2nd—165 voxels per side (6.68 mm side, 299 mm³, \(n = 12 \)). The smallest trabecular model that we built was 65,000 elements and the largest model the computer’s capacity was able to build was 746,000 elements. After those simulations, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

For the beam model, skeleton image were used to build 3D beam element model, and one voxel represented the trabecular thickness (Fig. 2). A beam element is defined as a beam, with a circular section and two nodes, one at each end. The beam model considers each voxel of bone tissue as a node. The centers of two adjacent voxels constitute the two ends of a 2-node-beam element (Fig. 5). The adjacency of two nodes was determined comparing the distance of each voxel center to a distance equal to voxel size \(d \), \(\sqrt{2}d \) or \(\sqrt{3}d \). A final treating eliminates the double beams (between pixels 2–8 and 8–2).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).

A C++ program, developed at the LaMcoS, converted each voxel on the μCT volume into an 8-node-hexahedral element (Fig. 4). For each simulation, thin samples (BV/TV < 12%) have been both built with hexahedral model (\(n = 12 \)) and beam elements (2 nodes, \(n = 7 \)).
obtain a beam FE density equal to the hexahedral FE density. The FE density corresponds to the total volume of the total number of elements compared to the entire cube. The FE density is then similar to the ratio bone volume/tissue volume. For both models, we used an isotropic and linear elastic behavior law, with an arbitrary elastic numerical Young’s modulus \(E_{\text{num initial}}^{\text{trabecular}} = 8000 \text{ MPa} \) and a Poisson’s ratio \((v = 0.3) \) at the first step of the calculation. The tissue properties were estimated by scaling the apparent modulus computed using \(E_{\text{num initial}}^{\text{trabecular}} \) to match the experimentally determined value as follows:

\[
E_{\text{app}}^{\text{trabecular}} = E_{\text{num initial}}^{\text{trabecular}} \frac{E_{\text{app}}^{\exp}}{\sigma_{\text{max}}^{\exp}}
\]

where \(\varepsilon \) is the axial apparent strain (0.5 %) implemented in the simulation.

The choice of \(E_{\text{num initial}}^{\text{trabecular}} \) is arbitrary but does not hold any significance because the simulations are linear elastic and the values can be scaled to match the experimental results.

Boundary conditions were chosen to simulate the compressive testing conditions. The model was loaded in the superior trabecular network direction by a distributed imposed translation corresponding to the force applied on the superior side; nodes on the inferior side were constrained in the superior trabecular network direction, and able to slip in the two other directions. The magnitude of the total applied force was depending on deformation, limited to 0.5% of deformation in the superior network direction (Z-axis).

2.7. Statistics

Descriptive statistics were summarized by mean value, standard deviation, median and range. Mechanical parameters or their logarithmic transformations (\(\ln E \)) were normally distributed. According to their distribution, differences between 3D parameters were assessed by a paired \(t \)-test for parametric test, and by Wilcoxon pair \(T \)-test for nonparametric test. The relationships between normally distributed parameters were evaluated by Pearson correlation coefficients \(r \) for parametric variables, and by Spearman correlation coefficient \(r_s \) for nonparametric variables. The degree of significance was assessed according to Bonferroni’s procedure (\(p \leq 0.01 \) indicates a significant correlation, Unistat® 5.5, SPSS® 11.5).

3. Results

3.1. Density and compressive properties

Density measurements and mechanical elastic properties obtained after compressive testing \((Z)\) are shown in Table 1. The Young’s modulus obtained from the destructive test \((E_{\text{app}}^{\exp})\) was significantly correlated with the Young’s modulus obtained during the elastic test \((E_{\text{app}}^{\exp(z)})\) \((r = 0.996, p < 0.0001, n = 12)\) and with the maximum compressive stress \(\sigma_{\text{max}}^{\exp} \) \((r = 0.96, p < 0.0001, n = 12)\). All the mechanical parameters were significantly correlated with the apparent density: \(E_{\text{app}}^{\exp} \) \((r = 0.87, p < 0.0001, n = 12)\), and \(\sigma_{\text{max}}^{\exp} \) \((r = 0.95, p < 0.0001, n = 11)\), with the tissue density: \(E_{\text{app}} \) \((r = 0.68, p < 0.001)\) and with the bone fraction volume obtained by Archimedes test \(\rho_{\text{app}}/\rho_{\text{tissue}}\): \(E_{\text{app}} \) \((r = 0.84, p < 0.001)\), \(\sigma_{\text{max}}^{\exp} \) \((r = 0.92, p < 0.001)\).

3.2. FE analysis

3.2.1. Model size influence

The aim was to compare results of two FE models based on cubes of 5.18 mm (128 voxels side, 140 mm³, \(n = 12 \))

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Medial cubic sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
</tr>
<tr>
<td>Densities</td>
<td></td>
</tr>
<tr>
<td>(\rho_{\text{app}}) (g/cm³)</td>
<td>12</td>
</tr>
<tr>
<td>(\rho_{\text{tissue}}) (g/cm³)</td>
<td>12</td>
</tr>
<tr>
<td>(\rho_{\text{app}}/\rho_{\text{tissue}}) (%)</td>
<td>12</td>
</tr>
<tr>
<td>(\text{BV}/\text{TV}_{\text{CT}}) (%)</td>
<td>12</td>
</tr>
<tr>
<td>Biomechanics</td>
<td></td>
</tr>
<tr>
<td>(E_{\text{app}}) (MPa)</td>
<td>12</td>
</tr>
<tr>
<td>(\sigma_{\text{max}}^{\exp}) (MPa)</td>
<td>11</td>
</tr>
</tbody>
</table>

SD, standard deviation; \(\rho_{\text{app}} \), apparent density; \(\rho_{\text{tissue}} \), tissue density; \(\rho_{\text{app}}/\rho_{\text{tissue}} \), bone volume fraction obtained by Archimedes principle. \(E_{\text{app}} \), experimental apparent Young’s modulus along the main axis; \(\sigma_{\text{max}}^{\exp} \), maximal experimental apparent stress.

^aWith \(E_{\text{app}}^{\exp} \)

^bWith \(E_{\text{app}}^{\exp(z)} \)

^cWith \(\rho_{\text{app}} \)
Table 2
Numerical Young’s modulus $E_{\text{num-hexahedral}}$ obtained by hexahedral finite element on two cubic sample’s size

<table>
<thead>
<tr>
<th>Volume (mm3)</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18 (140 mm3)</td>
<td>12</td>
<td>37,340</td>
<td>29,595</td>
<td>27,453</td>
<td></td>
</tr>
<tr>
<td>6.68 (299 mm3)</td>
<td>12</td>
<td>34,182</td>
<td>22,830</td>
<td>25,217</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7. Numerical Young’s modulus obtained by hexahedral elements for 2 volumes size of each sample

3.2.2. Element type influence

Results obtained with hexahedral and beam elements are shown in Fig. 8. There was a significant difference (t-test, $p < 0.05$) between the circular beam section radius R and the direct trabecular thickness TbTh*. But, a high significant correlation ($r = 0.979$, $p < 0.05$) was found between these two parameters. There is a significant difference (paired t-test, $p < 0.05$) between bone volume obtained by microtomography at 10.13 μm on cubic sample and bone volume fraction obtained using hexahedral models and bone volume obtained by Archimedes test $\rho_{\text{app}}/\rho_{\text{tissue}}$ (mean: BV/TV$_{\mu\text{CT}}$: $7.62 \pm 2.85\%$, BV/TV$_{\text{hexahedral}}$: $7.17 \pm 2.90\%$, $\rho_{\text{app}}/\rho_{\text{tissue}}$: $6.47 \pm 2.50\%$). However highly significant correlations were found between the bone density and the 'FE’ density ($r^2 = 0.99$, $p < 0.001$ and $r^2 = 0.93$, $p < 0.001$ respectively). A significant correlation was found between the trabecular thickness TbTh* and the apparent Young’s modulus E_{app} ($r^2 = 0.58$, $p < 0.05$). Numerical Young’s modulus E_{num} has a significant correlation with bone volume (BV/TV), in particular with the one (BV/TV$_{\text{hexahedral}}$) obtained on hexahedral models ($r^2 = 0.61$, $p < 0.05$) (Table 3). Numerical Young’s modulus $E_{\text{num-skeleton}}$ obtained with skeleton models was found to be 3-fold smaller than the one calculated with hexahedral models (mean: $E_{\text{trabecular}}$ = 10,305 \pm 5500 MPa, $E_{\text{num-hexahedral}}$ = 31,580 \pm 2700 MPa), (Table 3 and Fig. 8). For one of the samples, there is a 8-fold difference between Young’s modulus calculated by beam and hexahedral models. With or without this sample, there is a significant difference ($p = 0.018$, Wilcoxon T-test) in the calculation of Young’s modulus and a high significant correlation (Spearman coefficient) was found between these two parameters ($r^2 = 0.89$, $p < 0.01$, $n = 7$). Comparing results obtained for different models, E_{app} is not correlated to $E_{\text{num-hexahedral}}$ ($r^2 = -0.1$, $p > 0.84$, $n = 5$), but is related, without significance, to $E_{\text{num-skeleton}}$.
and a significance was found between the two numerical Young’s moduli ($r^2 = 0.89$, $p < 0.03, n = 7$).

4. Discussion

Intrinsic mechanical properties of trabecular bone were determined using experimentally measured mechanical properties and FE models built from µCT. We have shown that the size of the imaging sample was an important parameter on determining numerical Young’s modulus values. Small FE dimensions could induce mistakes in interpretation of results. From a mechanical point of view, cubic sample should have a minimal size of 5 mm side (Brown and Ferguson, 1980; Linde et al., 1991; Odgaard and Linde, 1991).
Density measurements and mechanical elastic properties obtained in this study are in the same order as those found in the literature (Jensen et al., 1991; Lespesailles et al., 1998; Lindahl, 1976; Mitton et al., 1998). Significant correlations were found between the different parameters, as already shown for this site (Jensen et al., 1991; Langton et al., 1996; Weaver and Chalmers, 1966). Results obtained by finite hexahedral element for trabecular Young’s modulus are greatly higher than those found in the literature ($E = 34.2 \pm 22.83$ GPa, $n = 12$). This result is at least 2-fold higher than values obtained in any human bone. Recently, Morgan et al. has shown that trabecular bone modulus–density relationships depend on anatomic site (Morgan et al., 2003). Those authors obtained a range of Young’s modulus between 4.73, 15.01 and 15.52 GPa for, respectively, human vertebra (T10–L5), greater trochanter and proximal tibia. Van Rietbergen et al. investigated whether the calculation of cancellous bone mechanical properties from microfinite element models based on such new peripheral quantitative computed tomography (pQCT) and magnetic resonance (MR) was feasible (Van Rietbergen et al., 1995, 1998). Authors found a maximal Young’s modulus equal to 2 GPa by pQCT but did not use experimental compressive testing. More recently, Pistoia et al. used a similar technique (Pistoia et al., 2001, 2002), based on FE models to calculate elastic properties of trabecular bone in vitro. It has been demonstrated that this technique can provide an accurate prediction of anisotropic bone elastic properties (Ladd and Kinney, 1998; Van Rietbergen, 1997a, b), but none of these type of studies has been exploited on calcaneus. Recently, Crawford et al. (Crawford et al., 2003b) built a “voxel-base” FE models of 14 excised human cadaveric lumbar vertebral body, and they used a low- and high-resolution models ($3 \times 3 \times 3$ mm and $1 \times 1 \times 1.5$ mm element size) and tried to mimic the experimental condition ($E = 2500$ MPa, $v = 0.3$) to predict the experimentally measured compressive fracture strength of the vertebral bodies. To explain the difference observed between the present numerical Young’s modulus obtained by hexahedral elements and those found by all precedent authors, we suggest our models were not well adapted for each bone structure. Hexahedral elements do not well represent bending behavior, and, in case of very thin structure (like osteoporotic bone), sample bones were not only subject to compressive stress but also bending stress. Niebur et al. suggested another behavior law, with a bilinear tissue level constitutive model (Niebur et al., 2000, 2002). Numerical errors of the calculated elastic moduli are shown by Ladd et al. and depended on resolution (Ladd et al., 1998). To quantify reductions in mechanical properties, such as Young’s modulus and strength in trabecular bone loss, Guo et al. used an idealized 3D microstructural model of trabecular bone to create bone loss (Guo and Kim, 2002).

We have also found that the numerical Young’s modulus appears smaller using a skeleton model instead of a hexahedral model ($E_{\text{num-skeleton}} = 10.305 \pm 5500$ MPa, $E_{\text{num-hexahedral}} = 31.580 \pm 2700$ MPa), they are significantly different but there is a significant correlation between these two numerical calculations. With our skeleton model, results found reflect only a method to mimic experimental mechanical properties. Comparing the numerical to the experimental apparent Young’s modulus, we did not find a relation between E_{exp} and $E_{\text{trabecular}}$ showing that the overestimation of those values could not give an estimation of this experimental parameter. However, we showed that, changing the type of element, we could estimate E_{exp}. Moreover, there is a significant difference between each bone volume fraction (calculated by µCT and by beam volume). It can be explained by the fact that we used mean TbTh obtained by µCT to built beam FE Experimental apparent mechanical properties are strongly related to BV/TV. Between individual cube samples, using an hexahedral or beam model, the range of difference in numerical Young’s modulus is from 32 % for BV/TV = 10.75% to 82% for BV/TV = 5.74%. These results show the effect of both the type of element used and the initial BV/TV. However, results obtained on numerical Young’s modulus obtained by skeleton models are near to those found in the literature (mean: $E_{\text{trabecular}} = 10.305 \pm 5500$ MPa). A disadvantage of this method is that we chose only bone samples with very thin trabecular bone to be able to apply a skeleton method (with “rod-like” structures). It would also be interesting to obtain variable trabecular thickness for each sample by µCT and implement it in a finite beam element model. Recently, different research teams started this kind of work (Dagan et al., 2004; Jaecques et al., 2004), and Stolken et al. started to simulate the trabecular bone failure (Stolken and Kinney, 2003). To conclude, the 5 mm-side criterion might not be the only criterion to take into account, and we might have to take into account the specific structure of trabecular bone. Generally, trabecular bone is composed at the same time of rod-like and plate structures. It would be interesting to build a FE model using simultaneously beam and shell elements with different behavior law and a mineralization degree based on the grayscale level inside each trabecular bone (Follet et al., 2004) for a better representation of trabecular bone.

Acknowledgments

The authors thank Philippe Falandry from CINES (Montpellier, France) for his skillful technical assistance and Charles H. Turner for scientific discussion and for reviewing the English manuscript.
Appendix

\[
E_{\text{app}}^{\text{exp}} \quad \text{(MPa) Experimental Apparent Young's Modulus after destructive test in the main trabecular direction (z)}
\]

\[
\sigma_{\text{max}, \text{app}}^{\text{exp}} \quad \text{(MPa) Maximal experimental apparent stress}
\]

\[
E_{\text{app}}^{\exp(x,y) \text{ or } (z)} \quad \text{(MPa) Experimental Apparent Young's Modulus after nondestructive test in the direction (x), (y) or (z)}
\]

\[
E_{\text{num}}^{\text{trabecular}} \quad \text{(MPa) Numerical intrinsic trabecular Young's modulus after simulation, obtained for trabecular bone (MPa), 2 kinds:}
\]

\[
E_{\text{num-skeleton}}^{\text{trabecular}} \quad \text{(MPa) Intrinsic trabecular Young's modulus after numeric simulation using beam elements}
\]

\[
E_{\text{num-hexahedral}}^{\text{trabecular}} \quad \text{(MPa) Intrinsic trabecular Young's modulus after numeric simulation using hexahedral elements}
\]

\[
\sigma_{\text{max, app}}^{\text{num}} \quad \text{(MPa) Numerical maximal apparent stress after numerical simulation}
\]

\[
\rho_{\text{app}} \quad \text{(g cm}^{-3}) \quad \text{Tissue density, defined as the weight of defatted specimen in air (M_{\text{air}}) divided by the specimen bulk volume (V_{\text{specimen}})}
\]

\[
\rho_{\text{tissue}} \quad \text{(g cm}^{-3}) \quad \text{Tissue density, defined as the weight of defatted and dried specimen in air (M_{\text{air}}), divided by bone volume (V_{\text{bulk}}) \rho_{\text{tissue}} = M_{\text{air}}/(M_{\text{air}}-M_{\text{water}})}
\]

\[
\text{Bone Volume estimated by Archimedes principle}
\]

References

