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Abstract.  Radiotherapy planning requires accurate delineations of the
critical structures. To avoid manual contouring, atlas-ba sed segmenta-
tion can be used to get automatic delineations. However, the results
strongly depend on the chosen atlas, especially for the headand neck
region where the anatomical variability is high. To address this problem,

atlases adapted to the patient's anatomy may allow for a bett er regis-
tration, and already showed an improvement in segmentation accuracy.
However, building such atlases requires the de nition of a criterion to

select among a database the images that are the most similar © the pa-
tient. Moreover, the inter-expert variability of manual co ntouring may be

high, and therefore bias the segmentation if selecting only one image for
each region. To tackle these issues, we present an original rathod to de-
sign a piecewise most similar atlas. Given a query image, we popose an
e cient criterion to select for each anatomical region the K most similar

images among a database by considering local volume variatons possibly
induced by the tumor. Then, we present a new approach to combine the
K images selected for each region into a piecewise most simér template.

Our results obtained with 105 CT images of the head and neck show
that our method reduces the over-segmentation seen with an average
atlas while being robust to inter-expert manual segmentati on variability.

1 Introduction

The purpose of radiotherapy planning is to optimize the dose receiwe by the
tumor while controlling the dose on the surrounding Organs At Risk (OARS).
This requires the accurate delineation of the Clinical Target Volume CTV)
and the OARs. In clinical routine, this task is often performed manually, which
is tedious and prone to inter-expert variability. To ease this task, alas-based
segmentation may be used to get automatic delineations, and showlesatisfying
results for the brain [1] and promising results for the head and neckegion [2].
In the head and neck, the anatomical variability among patients is hid,
mainly due to corpulence and neck exion. Previous studies showedhat an
average atlas has di culties to cope with this high variability, and may r esult in
over-segmentation for some structures [2]. Utilizing an atlas that isspeci cally
adapted to the anatomy of the patient to delineate may help to improve the
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registration quality, and therefore the accuracy of the segmerdtion. To this end,
one solution is to compute population-speci ¢ atlases, for example ¥ clustering
the database into homogeneous sub-groups [3] and computing average atlas
for each sub-group. To be even more specic to the patient (and ot only to
a given population), other approaches [4,5] have been developea tconsider
each manually delineated image of a database as a potential atlas, drto select
the most appropriate one for each new query image to segment. Bgxtension,
and to enhance robustness, it has been proposed to select sealeof the most
appropriate images, register them independently to the patient al combine the
segmentation results [6]. All these approaches bring up two questits: how to
select the most appropriate images for a given patient and how to fse them.

The selection criterion must be able to account for the anatomical ariabil-
ity in the database (various corpulence, neck exion, various tuma size and
grade), and it must be fast enough to be used in clinical routine. Selgion cri-
teria based on meta-information (e.g. age [6]) have been used, buhéy are not
suitable when dealing with anatomical variability independent of simple meta-
information. Therefore, criteria based on intensities [6, 4] have ben proposed.
However, our database is composed of pathological images, whichawy corrupt
intensity based criteria. Commowik et al. proposed to estimate the anount of de-
formation needed to warp each image onto the patient image, usinghte average
atlas to reduce computation time [5]. This criterion is computationally interest-
ing but it still requires inverting and composing many deformation eld s. Our
rst contribution is to propose an e cient selection criterion based on the degree
of contraction and dilation of the structures. This criterion is well-suited for our
case as it may account for the local volume variations caused by theumor.

Regardless of the nature of the selection criterion, it may be appliedjlobally
on the images [6, 5], or locally in order to cope with the local changes afach
region [7{10, 4]. Because of the high anatomical variability and as oudatabase
is composed of pathological images, a local selection seems more aypiate to
consider the local impact of the tumor on the surrounding anatomi@l structures.

Once the most appropriate images have been selected for each img of
interest, the fusion step has to be performed. In [9], a frameworkvas proposed
to build a piecewise most similar atlas from a set of images selected onguie ned
regions. This showed an improvement in segmentation accuracy withespect to
an average atlas. However, it was restricted to the selection of arggle image for
each region, which makes it more sensitive to the selection step (e.gutliers may
exist in the selection process). Moreover, it may also be sensitive tihe relatively
high inter-expert variability in the head and neck region. Our secondcontribution
is then to provide a framework to combine K, selected images for each region
R| into one template for segmentation, taking into account the relative values of
the selection criterion to weight each selected image accordingly.

We illustrate the capacities of our framework with 105 CT images of the head
and neck region, showing its ability to reduce the over-segmentatio seen with an
average atlas while being less sensitive to inter-expert segmentatiovariability
than a piecewise atlas computed using only one image per region.
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2 Method

We present a new method to design an atlas locally adapted to the pant P
to delineate on prede ned regions. We assume that a database df manually
delineated imagesf I gj»(1:.n 7 iS available. Moreover, we suppose that an aver-
age atlasM has been built from this database. The average atlas construction
provides for each imagel; a transformation warping it on M. We denote by
Ti;, wm the non-linear part of the transformation allowing to resample I; on M,
and J;; wm the corresponding image of the Jacobian determinant values.

2.1 Ecient Local Selection of the Most Similar Images throu gh
Volume Variation Estimation

We wish to select among the imaged1;gj,1..n ] the ones that are the most
similar to the query patient P on prede ned regionsfRgj21.... ;- The regions
R, are de ned once and for all on the average atlagvl. Typically, one may
de ne them as a dilation of the anatomical structures of interest. For a given
region R, in M, we de ne our criterion as a comparison of the average degree
of contraction/dilation when deforming |; on M and when deformingP on M.
To do this, we rst average on R, the logarithms of the determinants of the
Jacobian matrices for each non-linear deformationl;; v, as described below:

1 X

‘]RI(Ij M): Cal'd(R|) XZRI

log(di; w (X)) @)

In the same way, after registeringM and P, we can estimateJg, (P M) from

Tp wm. Then, the imagesfljg»1..n ; Can be ranked from the most similar to
the least similar to the patient P on R, according to the distancedg, (Ij;P) =

kdg, (P M) Jgr (I; M )k. This criterion is well-suited for the local selection
of the most similar images. Our images indeed present tumors of varis sizes and
grades that can induce local volume variations of the CTV and of thesurrounding
OARs. Moreover, it is very e cient as the Jg,(l; M) are pre-computed.
It only requires performing one non-linear registration betweenP and M and
computing Jg, (P M). By comparison, other methods either require multiple
registrations [3, 4] or many inversions and compositions of defornmtan elds [5].

2.2 Construction of a Piecewise Most Similar Atlas Incorpor ating
Selection Weights

For each regionR|, the K| images of the database having the lowest distances
dr, (Ij; P) are selected to build the piecewise most similar atlas and are denoted
fMn On2 1k 1+ Further, we associate each imagé;;, with a selection weight ., ,
based ondg, (I:n ; P), that re ects its relative degree of similarity to P on R;.
To compute |, we used the Gaussian kernel, i.e. ., = G. (dr,(In;P)),
as it allows us to discriminate distances that are very large. The Gausian can
be centered either on zero, or on the minimum distance found for ta region
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R; (we chose the second solution). As to the standard deviation , it controls
the rejection of images with a large distance and was computed frorthe whole
distribution of distapces on R,. The weights are then normalized for each region,
so that for eachl; ﬁ:'l :n = 1. In addition, we also consider spatial weights
to allow a smooth transition when interpolating between the regionsR, in the
construction of the piecewise atlas. The spatial weight of the regin R, at location
x is de ned asw;(x) = 1=(1+ dist(x; R|)) where dist(x; Rl)lgefers to the minimal
distance to R, at location x. It is then normalized so that ,L:1 wi(x) = 1.

Construction of the Piecewise Most Similar Image The construction
process may be seen as a classical atlas construction [11] where tmages have
varying weights depending on the spatial location of each voxelw,;(x)) and on
the selection distances (., ). We iterate over the following steps Vo = M):

1. Register the imagesly, on the current referenceNry. This step provides
ane transformations A, =, and non-linear transformations T, =\,
2. Compute the new average imag®l .1 by interpolating the intensities of the

warped I, using the two sets of weightswix (X) and |
3. Compute an average di eomorphismT from the T, ; and the weights
. Apply T, ' to My, to get the new referenceMiss = Mywr T, *
5. Update the regions of interest by applyingT, * t0 Rix: Rik+1 = Rk T, %
and update the spatial weightsw. +1 () accordingly

N

This process is similar to [9]. However, it is much more general as it allows
the combination of several images for each regiolR,. This is achieved by the
following equations for steps 2 and 3. First, the intensities are intepolated by:

" [
N % I#

M1 (X) = Wik (X) n [in Aﬁ;n M Tﬁ;n M (x) 2)
1=1 n=1

The inner term (sum over n) computes a weighted average of the selected im-
ages for a regionR,, while the outer term uses the spatial weights to combine
the contributions from each regionR,. Similarly, in step 3, we compute an av-
erage polydi eomorphism Ty using the Log-Euclidean framework [12]*. This
framework ensures to remain on the manifold of di eomorphisms andeads to
an aytonqqnous Or%inary Di erential Equation that can be easily inte grated:

L

X= L, wx(X) KL g log Thn w ()

Construction of the Associated Segmentation After building the piece-
wise most similar template, we need to compute its associated segntation
from the delineations of the selected images. The images of our ddiase have
been delineated for a clinical purpose, and some contours are misgirior some

! The deformations in the head and neck region are close enoughto the identity,
ensuring that the computed logarithms are correct, as speci ed by Arsigny et al.
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structures. To deal with this di culty, we chose to de ne one regio n R, for each
anatomical structure in the construction of the template image.

The construction of the associated segmentation is then achieved two steps.
First, we compute a probability map for each structure independetly using the
selected manual segmentations and the selection weights., . Then, we assign
each voxel of the template image to the structure that has the hidpest probability.

3 Evaluation

We evaluated the proposed framework withN = 105 CT images of the head and
neck region. On these images, the CTVs and OARs were manually deliaged

following the guidelines in [13]. The structures involved are the lymph nale levels
I, 11l and IV (CTVS), the parotids, the spinal cord, and the bra instem (OARS).

We performed a Leave-One-Out analysis, each patient being sucsgvely ex-
cluded from the database and delineated with each of the three folleing atlases
built from the N 1 remaining images: (1) AVE: average atlas built as in [2],
(2) PW _1: piecewise most similar atlas built with K| = 1 image for each region,
and (3) PW_10: piecewise most similar atlas built withK| = 10 images for each
region. As registration algorithm, we used the framework describé in [2].

3.1 Qualitative Results

Fig. 1 shows the three di erent atlases (b,c,d) computed for a givenpatient (a)
whose neck exion is above average. The spinal cord contours shothat the
average atlas (b) and the piecewise atlas PWL (c) both have a relatively low
neck exion, whereas the neck exion of PW_10 (d) looks much more similar to
the patient's one (see arrows). When registering head and neck ingees, a di erent
neck exion between the atlas and the patient is a common issue, oéin leading
to registration errors and low segmentation accuracy. Therefoe, our method's
ability to provide a correct neck exion may increase segmentation giality.

Fig. 2 illustrates some qualitative segmentation results on the paroids and
on the lymph nodes levels IlI-IV using the three atlases. Comparedo the man-
ual contours (a), the automatic contours provided by the averaye atlas (AVE)

(b) (© (d)

Fig. 1. lllustration of the atlases used for a given patient . For the given patient
(a), comparison between the average atlas (AVE) (b), the pie cewise most similar atlases
PW _1 (c) and PW _10 (d). The atlases shown were a nely registered on the patie nt.
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Fig. 2. Qualitative segmentation results of each method. (a) Manual contours.
Automatic contours with AVE (b), with PW  _1 (c) and with PW _10 (d). Black land-
marks attached to the manual contours are also shown to draw the comparison.

(b) are too large, which was already observed in [2]. As mentioned in [9RW_1
(image (c)) allows to reduce the over-segmentation. However, it &s built from
only one image for each region, and it is therefore likely to be biased bihe inter-
expert variability of delineation. The two small arrows on image (c) show the
in uence of local speci cities of the selected segmentations on ehaegion. More-
over, by construction, PW_1 segmentations can present some discontinuities. For
instance, the large arrow on image (c) shows some non-connectégmph node
levels Il and IV, which is anatomically inconsistent. The automatic contours
obtained with PW _10 (image (d)) are much less dependent on the inter-expert
variability as 10 segmentations were fused for each structure. M@over, the ob-
tained contours are closer to the manual contours than both cotours from AVE
(b) and PW _1 (c), which results in shorter correction time for the clinician.

3.2 Quantitative Results

We now compare the performance of the three atlases AVE, PWL and PW_10
in terms of segmentation accuracy. To this end, sensitivity and spei city were

averaged for each structure over all the Leave-One-Out testsThe results are
presented in Fig. 3. First, as observed in [9], PW1 shows an improvement of
the speci city with respect to AVE, which is related to the reduction of the
over-segmentation. However, this improvement is achieved at theexpense of
the sensitivity. With PW _10, the specicity is even higher than with PW_1
and the decrease in sensitivity is lower. For all structures, we also grformed









