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Abstract. Radiotherapy planning requires accurate delineations of t he
critical structures. To avoid manual contouring, atlas-ba sed segmenta-
tion can be used to get automatic delineations. However, the results
strongly depend on the chosen atlas, especially for the headand neck
region where the anatomical variability is high. To address this problem,
atlases adapted to the patient's anatomy may allow for a bett er regis-
tration, and already showed an improvement in segmentation accuracy.
However, building such atlases requires the de�nition of a c riterion to
select among a database the images that are the most similar to the pa-
tient. Moreover, the inter-expert variability of manual co ntouring may be
high, and therefore bias the segmentation if selecting only one image for
each region. To tackle these issues, we present an original method to de-
sign a piecewise most similar atlas. Given a query image, we propose an
e�cient criterion to select for each anatomical region the K most similar
images among a database by considering local volume variations possibly
induced by the tumor. Then, we present a new approach to combine the
K images selected for each region into a piecewise most similar template.
Our results obtained with 105 CT images of the head and neck show
that our method reduces the over-segmentation seen with an average
atlas while being robust to inter-expert manual segmentati on variability.

1 Introduction

The purpose of radiotherapy planning is to optimize the dose received by the
tumor while controlling the dose on the surrounding Organs At Risk (OARs).
This requires the accurate delineation of the Clinical Target Volume (CTV)
and the OARs. In clinical routine, this task is often performed manually, which
is tedious and prone to inter-expert variability. To ease this task, atlas-based
segmentation may be used to get automatic delineations, and showed satisfying
results for the brain [1] and promising results for the head and neckregion [2].

In the head and neck, the anatomical variability among patients is high,
mainly due to corpulence and neck 
exion. Previous studies showed that an
average atlas has di�culties to cope with this high variability, and may r esult in
over-segmentation for some structures [2]. Utilizing an atlas that isspeci�cally
adapted to the anatomy of the patient to delineate may help to improve the
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registration quality, and therefore the accuracy of the segmentation. To this end,
one solution is to compute population-speci�c atlases, for example by clustering
the database into homogeneous sub-groups [3] and computing an average atlas
for each sub-group. To be even more speci�c to the patient (and not only to
a given population), other approaches [4, 5] have been developed to consider
each manually delineated image of a database as a potential atlas, and to select
the most appropriate one for each new query image to segment. Byextension,
and to enhance robustness, it has been proposed to select several of the most
appropriate images, register them independently to the patient and combine the
segmentation results [6]. All these approaches bring up two questions: how to
select the most appropriate images for a given patient and how to fuse them.

The selection criterion must be able to account for the anatomical variabil-
ity in the database (various corpulence, neck 
exion, various tumor size and
grade), and it must be fast enough to be used in clinical routine. Selection cri-
teria based on meta-information (e.g. age [6]) have been used, but they are not
suitable when dealing with anatomical variability independent of simple meta-
information. Therefore, criteria based on intensities [6, 4] have been proposed.
However, our database is composed of pathological images, which may corrupt
intensity based criteria. Commowik et al. proposed to estimate the amount of de-
formation needed to warp each image onto the patient image, using the average
atlas to reduce computation time [5]. This criterion is computationally interest-
ing but it still requires inverting and composing many deformation �eld s. Our
�rst contribution is to propose an e�cient selection criterion based on the degree
of contraction and dilation of the structures. This criterion is well-suited for our
case as it may account for the local volume variations caused by thetumor.

Regardless of the nature of the selection criterion, it may be appliedglobally
on the images [6, 5], or locally in order to cope with the local changes ofeach
region [7{10, 4]. Because of the high anatomical variability and as ourdatabase
is composed of pathological images, a local selection seems more appropriate to
consider the local impact of the tumor on the surrounding anatomical structures.

Once the most appropriate images have been selected for each region of
interest, the fusion step has to be performed. In [9], a frameworkwas proposed
to build a piecewise most similar atlas from a set of images selected on prede�ned
regions. This showed an improvement in segmentation accuracy withrespect to
an average atlas. However, it was restricted to the selection of a single image for
each region, which makes it more sensitive to the selection step (e.g.outliers may
exist in the selection process). Moreover, it may also be sensitive tothe relatively
high inter-expert variability in the head and neck region. Our secondcontribution
is then to provide a framework to combineK l selected images for each region
Rl into one template for segmentation, taking into account the relative values of
the selection criterion to weight each selected image accordingly.

We illustrate the capacities of our framework with 105 CT images of the head
and neck region, showing its ability to reduce the over-segmentation seen with an
average atlas while being less sensitive to inter-expert segmentation variability
than a piecewise atlas computed using only one image per region.
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2 Method

We present a new method to design an atlas locally adapted to the patient P
to delineate on prede�ned regions. We assume that a database ofN manually
delineated imagesf I j gj 2 [1:::N ] is available. Moreover, we suppose that an aver-
age atlasM has been built from this database. The average atlas construction
provides for each imageI j a transformation warping it on M . We denote by
TI j  M the non-linear part of the transformation allowing to resample I j on M ,
and JI j  M the corresponding image of the Jacobian determinant values.

2.1 E�cient Local Selection of the Most Similar Images throu gh
Volume Variation Estimation

We wish to select among the imagesf I j gj 2 [1:::N ] the ones that are the most
similar to the query patient P on prede�ned regions f Rl gl 2 [1:::L ]. The regions
Rl are de�ned once and for all on the average atlasM . Typically, one may
de�ne them as a dilation of the anatomical structures of interest. For a given
region Rl in M , we de�ne our criterion as a comparison of the average degree
of contraction/dilation when deforming I j on M and when deformingP on M .
To do this, we �rst average on Rl the logarithms of the determinants of the
Jacobian matrices for each non-linear deformationTI j  M , as described below:

�JR l (I j  M ) =
1

card(Rl )

X

x 2 R l

log(JI j  M (x)) (1)

In the same way, after registeringM and P, we can estimate �JR l (P  M ) from
TP  M . Then, the imagesf I j gj 2 [1:::N ] can be ranked from the most similar to
the least similar to the patient P on Rl according to the distancedR l (I j ; P) =
k �JR l (P  M )� �JR l (I j  M )k. This criterion is well-suited for the local selection
of the most similar images. Our images indeed present tumors of various sizes and
grades that can induce local volume variations of the CTV and of thesurrounding
OARs. Moreover, it is very e�cient as the �JR l (I j  M ) are pre-computed.
It only requires performing one non-linear registration betweenP and M and
computing �JR l (P  M ). By comparison, other methods either require multiple
registrations [3, 4] or many inversions and compositions of deformation �elds [5].

2.2 Construction of a Piecewise Most Similar Atlas Incorpor ating
Selection Weights

For each regionRl , the K l images of the database having the lowest distances
dR l (I j ; P) are selected to build the piecewise most similar atlas and are denoted
f ~I l;n gn 2 [1:::K l ]. Further, we associate each image~I l;n with a selection weight � l;n ,
based ondR l ( ~I l;n ; P), that re
ects its relative degree of similarity to P on Rl .
To compute � l;n , we used the Gaussian kernel, i.e.� l;n = G�;� (dR l ( ~I l;n ; P)),
as it allows us to discriminate distances that are very large. The Gaussian can
be centered either on zero, or on the minimum distance found for the region
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Rl (we chose the second solution). As to the standard deviation� , it controls
the rejection of images with a large distance and was computed fromthe whole
distribution of distances on Rl . The weights are then normalized for each region,
so that for each l;

P K l
n =1 �� l;n = 1. In addition, we also consider spatial weights

to allow a smooth transition when interpolating between the regionsRl in the
construction of the piecewise atlas. The spatial weight of the region Rl at location
x is de�ned aswl (x) = 1 =(1+ � dist(x; R l )) where dist(x; R l ) refers to the minimal
distance to Rl at location x. It is then normalized so that

P L
l =1 �wl (x) = 1.

Construction of the Piecewise Most Similar Image The construction
process may be seen as a classical atlas construction [11] where the images have
varying weights depending on the spatial location of each voxel ( �wl (x)) and on
the selection distances (�� l;n ). We iterate over the following steps ( ~M 0 = M ):

1. Register the images~I l;n on the current reference ~M k . This step provides
a�ne transformations A ~I l;n  ~M k

and non-linear transformations T~I l;n  ~M k

2. Compute the new average imageM k+1 by interpolating the intensities of the
warped ~I l;n using the two sets of weights �wl;k (x) and �� l;n

3. Compute an average di�eomorphism �Tk from the T~I l;n  ~M k
and the weights

4. Apply �T � 1
k to M k+1 to get the new reference ~M k+1 = M k+1 � �T � 1

k
5. Update the regions of interest by applying �T � 1

k to Rl;k : Rl;k +1 = Rl;k � �T � 1
k ,

and update the spatial weights �wl;k +1 (x) accordingly

This process is similar to [9]. However, it is much more general as it allows
the combination of several images for each regionRl . This is achieved by the
following equations for steps 2 and 3. First, the intensities are interpolated by:

M k+1 (x) =
LX

l =1

"

�wl;k (x)

 
K lX

n =1

�� l;n

�
~I l;n � A ~I l;n  ~M k

� T~I l;n  ~M k

�
(x)

!#

(2)

The inner term (sum over n) computes a weighted average of the selected im-
ages for a regionRl , while the outer term uses the spatial weights to combine
the contributions from each region Rl . Similarly, in step 3, we compute an av-
erage polydi�eomorphism �Tk using the Log-Euclidean framework [12]1. This
framework ensures to remain on the manifold of di�eomorphisms andleads to
an autonomous Ordinary Di�erential Equation that can be easily inte grated:
_x =

P L
l =1

h
�wl;k (x)

� P K l
n =1 �� l;n log

�
T~I l;n  ~M k

�
(x)

�i
.

Construction of the Associated Segmentation After building the piece-
wise most similar template, we need to compute its associated segmentation
from the delineations of the selected images. The images of our database have
been delineated for a clinical purpose, and some contours are missing for some

1 The deformations in the head and neck region are close enoughto the identity,
ensuring that the computed logarithms are correct, as speci�ed by Arsigny et al.
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structures. To deal with this di�culty, we chose to de�ne one regio n Rl for each
anatomical structure in the construction of the template image.

The construction of the associated segmentation is then achievedin two steps.
First, we compute a probability map for each structure independently using the
selected manual segmentations and the selection weights �� l;n . Then, we assign
each voxel of the template image to the structure that has the highest probability.

3 Evaluation

We evaluated the proposed framework withN = 105 CT images of the head and
neck region. On these images, the CTVs and OARs were manually delineated
following the guidelines in [13]. The structures involved are the lymph node levels
II, III and IV (CTVs), the parotids, the spinal cord, and the bra instem (OARs).
We performed a Leave-One-Out analysis, each patient being successively ex-
cluded from the database and delineated with each of the three following atlases
built from the N � 1 remaining images: (1) AVE: average atlas built as in [2],
(2) PW 1: piecewise most similar atlas built with K l = 1 image for each region,
and (3) PW 10: piecewise most similar atlas built with K l = 10 images for each
region. As registration algorithm, we used the framework described in [2].

3.1 Qualitative Results

Fig. 1 shows the three di�erent atlases (b,c,d) computed for a givenpatient (a)
whose neck 
exion is above average. The spinal cord contours show that the
average atlas (b) and the piecewise atlas PW1 (c) both have a relatively low
neck 
exion, whereas the neck 
exion of PW 10 (d) looks much more similar to
the patient's one (see arrows). When registering head and neck images, a di�erent
neck 
exion between the atlas and the patient is a common issue, often leading
to registration errors and low segmentation accuracy. Therefore, our method's
ability to provide a correct neck 
exion may increase segmentation quality.

Fig. 2 illustrates some qualitative segmentation results on the parotids and
on the lymph nodes levels III-IV using the three atlases. Comparedto the man-
ual contours (a), the automatic contours provided by the average atlas (AVE)

(a) (b) (c) (d)

Fig. 1. Illustration of the atlases used for a given patient . For the given patient
(a), comparison between the average atlas (AVE) (b), the pie cewise most similar atlases
PW 1 (c) and PW 10 (d). The atlases shown were a�nely registered on the patie nt.
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(a) (b)

(c) (d)

Fig. 2. Qualitative segmentation results of each method. (a) Manual contours.
Automatic contours with AVE (b), with PW 1 (c) and with PW 10 (d). Black land-
marks attached to the manual contours are also shown to draw t he comparison.

(b) are too large, which was already observed in [2]. As mentioned in [9],PW 1
(image (c)) allows to reduce the over-segmentation. However, it was built from
only one image for each region, and it is therefore likely to be biased bythe inter-
expert variability of delineation. The two small arrows on image (c) show the
in
uence of local speci�cities of the selected segmentations on each region. More-
over, by construction, PW 1 segmentations can present some discontinuities. For
instance, the large arrow on image (c) shows some non-connectedlymph node
levels III and IV, which is anatomically inconsistent. The automatic contours
obtained with PW 10 (image (d)) are much less dependent on the inter-expert
variability as 10 segmentations were fused for each structure. Moreover, the ob-
tained contours are closer to the manual contours than both contours from AVE
(b) and PW 1 (c), which results in shorter correction time for the clinician.

3.2 Quantitative Results

We now compare the performance of the three atlases AVE, PW1 and PW 10
in terms of segmentation accuracy. To this end, sensitivity and speci�city were
averaged for each structure over all the Leave-One-Out tests. The results are
presented in Fig. 3. First, as observed in [9], PW1 shows an improvement of
the speci�city with respect to AVE, which is related to the reduction of the
over-segmentation. However, this improvement is achieved at theexpense of
the sensitivity. With PW 10, the speci�city is even higher than with PW 1
and the decrease in sensitivity is lower. For all structures, we also performed






