D. A. Marchuk, Vascular morphogenesis: tales of two syndromes, Human Molecular Genetics, vol.12, issue.90001, pp.97-112, 2003.
DOI : 10.1093/hmg/ddg103

R. E. Clatterbuck, Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations, Journal of Neurology, Neurosurgery & Psychiatry, vol.71, issue.2, pp.71-188, 2001.
DOI : 10.1136/jnnp.71.2.188

I. Serebriiskii, Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22, Oncogene, vol.15, issue.9, pp.1043-1052, 1997.
DOI : 10.1038/sj.onc.1201268

T. Sahoo, Mutations in the Gene Encoding KRIT1, a Krev-1/rap1a Binding Protein, Cause Cerebral Cavernous Malformations (CCM1), Human Molecular Genetics, vol.8, issue.12, pp.2325-2358, 1999.
DOI : 10.1093/hmg/8.12.2325

S. Laberge-le-couteulx, Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas, Nat Genet, vol.23, issue.2, pp.189-93, 1999.

S. Beraud-dufour, Krit???1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1, FEBS Journal, vol.26, issue.21, pp.274-5518, 2007.
DOI : 10.1111/j.1742-4658.2007.06068.x

URL : https://hal.archives-ouvertes.fr/inserm-00322435

F. Francalanci, Structural and functional differences between KRIT1A and KRIT1B isoforms: A framework for understanding CCM pathogenesis, Experimental Cell Research, vol.315, issue.2, pp.315-285, 2009.
DOI : 10.1016/j.yexcr.2008.10.006

C. L. Liquori, Mutations in a Gene Encoding a Novel Protein Containing a Phosphotyrosine-Binding Domain Cause Type 2 Cerebral Cavernous Malformations, The American Journal of Human Genetics, vol.73, issue.6, pp.73-1459, 2003.
DOI : 10.1086/380314

C. Denier, Mutations within the MGC4607 Gene Cause Cerebral Cavernous Malformations, The American Journal of Human Genetics, vol.74, issue.2, pp.326-363, 2004.
DOI : 10.1086/381718

M. T. Uhlik, Rac???MEKK3???MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock, Nature Cell Biology, vol.15, issue.12, pp.1104-1114, 2003.
DOI : 10.1093/emboj/19.20.5387

F. Bergametti, Mutations within the Programmed Cell Death 10 Gene Cause Cerebral Cavernous Malformations, The American Journal of Human Genetics, vol.76, issue.1, pp.42-51, 2005.
DOI : 10.1086/426952

URL : https://hal.archives-ouvertes.fr/hal-00016902

C. R. Busch, D. D. Heath, and A. Hubberstey, Sensitive genetic biomarkers for determining apoptosis in the brown bullhead (Ameiurus nebulosus), Gene, vol.329, pp.1-10, 2004.
DOI : 10.1016/j.gene.2004.01.004

L. Chen, Apoptotic Functions of PDCD10/CCM3, the Gene Mutated in Cerebral Cavernous Malformation 3, Stroke, vol.40, issue.4, 2009.
DOI : 10.1161/STROKEAHA.108.527135

X. Ma, PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations, Mol Biol Cell Neurogenetics, vol.18, issue.84, pp.249-56, 2007.

J. S. Zawistowski, CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis, Human Molecular Genetics, vol.14, issue.17, pp.14-2521, 2005.
DOI : 10.1093/hmg/ddi256

J. Zhang, Interaction between krit1 and malcavernin: implications for the pathogenesis of cerebral cavernous malformations Deletions in CCM2 are a common cause of cerebral cavernous malformations, Neurosurgery Am J Hum Genet, vol.60, issue.801, pp.353-362, 2007.

S. Stahl, Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex, Human Mutation, vol.60, issue.5, pp.29-709, 2008.
DOI : 10.1002/humu.20712

T. L. Hilder, Proteomic Identification of the Cerebral Cavernous Malformation Signaling Complex, Journal of Proteome Research, vol.6, issue.11, pp.4343-55, 2007.
DOI : 10.1021/pr0704276

M. Goudreault, A PP2A Phosphatase High Density Interaction Network Identifies a Novel Striatin-interacting Phosphatase and Kinase Complex Linked to the Cerebral Cavernous Malformation 3 (CCM3) Protein, Molecular & Cellular Proteomics, vol.8, issue.1, pp.157-71, 2009.
DOI : 10.1074/mcp.M800266-MCP200

H. N. Fournier, Nuclear Translocation of Integrin Cytoplasmic Domain-associated Protein 1 Stimulates Cellular Proliferation, Molecular Biology of the Cell, vol.16, issue.4, pp.1859-71, 2005.
DOI : 10.1091/mbc.E04-08-0744

URL : https://hal.archives-ouvertes.fr/hal-00171321

M. Gunel, KRIT1, a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated protein, Proceedings of the National Academy of Sciences, vol.99, issue.16, pp.99-10677, 2002.
DOI : 10.1073/pnas.122354499

G. Boulday, Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations, Disease Models and Mechanisms, vol.2, issue.3-4, pp.3-4, 2009.
DOI : 10.1242/dmm.001263

K. J. Whitehead, The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases, Nature Medicine, vol.110, issue.2, pp.177-84, 2009.
DOI : 10.1083/jcb.200603176

J. L. Bos, Linking Rap to cell adhesion, Current Opinion in Cell Biology, vol.17, issue.2, pp.123-128, 2005.
DOI : 10.1016/j.ceb.2005.02.009

B. Ponsioen, Direct spatial control of Epac1 by cAMP, Mol. Cell. Biol, pp.1630-1638, 2009.

A. Glading, KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell???cell junctions, The Journal of Cell Biology, vol.100, issue.2, pp.247-54, 2007.
DOI : 10.1074/jbc.M505057200

G. Carmona, Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis, Blood, vol.113, issue.2, pp.488-97, 2009.
DOI : 10.1182/blood-2008-02-138438

M. Chrzanowska-wodnicka, Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice, Blood, vol.111, issue.5, pp.2647-56, 2008.
DOI : 10.1182/blood-2007-08-109710

J. Yan, Rap1a Is a Key Regulator of Fibroblast Growth Factor 2-Induced Angiogenesis and Together with Rap1b Controls Human Endothelial Cell Functions, Molecular and Cellular Biology, vol.28, issue.18, pp.28-5803, 2008.
DOI : 10.1128/MCB.00393-08

A. V. Gore, Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke, Disease Models and Mechanisms, vol.1, issue.4-5, pp.4-5, 2008.
DOI : 10.1242/dmm.000513

J. D. Mably, heart of glass Regulates the Concentric Growth of the Heart in Zebrafish, Current Biology, vol.13, issue.24, pp.13-2138, 2003.
DOI : 10.1016/j.cub.2003.11.055

J. D. Mably, santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish, Development, vol.133, issue.16, pp.3139-3185, 2006.
DOI : 10.1242/dev.02469

B. Kleaveland, Regulation of cardiovascular development and integrity by the heart of glass???cerebral cavernous malformation protein pathway, Nature Medicine, vol.77, issue.2, pp.169-76, 2009.
DOI : 10.1074/jbc.273.11.6104

T. Lang, G. C. Hansson, T. Samuelsson, and J. , An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucins, BMC Genomics MUC1 Oncoprotein Functions in Activation of Fibroblast Growth Factor Receptor Signaling. Mol Cancer Res, issue.411, pp.873-883, 2006.

U. Gopal, Interaction of MUC1 with beta-catenin modulates the Wnt target Gene cyclinD1 in <I>H</I>. <I>pylori</I>-induced gastric cancer, Molecular Carcinogenesis, vol.46, issue.9, pp.807-817, 2007.

L. Huang, MUC1 Cytoplasmic Domain Coactivates Wnt Target Gene Transcription and Confers Transformation, Cancer Biology & Therapy, vol.2, issue.6, pp.702-708, 2003.
DOI : 10.4161/cbt.2.6.610

P. K. Singh and M. A. Hollingsworth, Cell surface-associated mucins in signal transduction, Trends in Cell Biology, vol.16, issue.9, pp.467-76, 2006.
DOI : 10.1016/j.tcb.2006.07.006

S. Liebner, Wnt/??-catenin signaling controls development of the blood???brain barrier, The Journal of Cell Biology, vol.105, issue.3, pp.409-426, 2008.
DOI : 10.1038/nature01611

S. Iden and J. G. Collard, Crosstalk between small GTPases and polarity proteins in cell polarization, Nature Reviews Molecular Cell Biology, vol.10, issue.11, pp.846-59, 2008.
DOI : 10.1038/nrm2521

B. D. Cuevas, A. N. Abell, and G. L. Johnson, Role of mitogen-activated protein kinase kinase kinases in signal integration, Oncogene, vol.14, issue.22, pp.26-3159, 2007.
DOI : 10.1093/emboj/cdg440

J. Yang, Mekk3 is essential for early embryonic cardiovascular development, Nature Genetics, vol.125, issue.3, pp.309-322, 2000.
DOI : 10.1016/S0378-1119(98)00158-9

S. Rousseau, p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells, Oncogene, vol.15, issue.18, pp.15-2169, 1997.
DOI : 10.1038/sj.onc.1201380

L. E. Crose, Cerebral Cavernous Malformation 2 Protein Promotes Smad Ubiquitin Regulatory Factor 1-mediated RhoA Degradation in Endothelial Cells, Journal of Biological Chemistry, vol.284, issue.20, p.47, 2009.
DOI : 10.1074/jbc.C900009200

B. Ozdamar, Regulation of the Polarity Protein Par6 by TGF?? Receptors Controls Epithelial Cell Plasticity, Science, vol.307, issue.5715, pp.1603-1612, 2005.
DOI : 10.1126/science.1105718

E. Sahai, Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility Mammalian Rho GTPases: new insights into their functions from in vivo studies, J Cell Biol Nat Rev Mol Cell Biol, vol.176, issue.49 99, pp.35-42, 2007.

M. Kamei, Endothelial tubes assemble from intracellular vacuoles in vivo, Nature, vol.49, issue.7101, pp.442-453, 2006.
DOI : 10.1038/nature04923

W. Koh, R. D. Mahan, and G. E. Davis, Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling, Journal of Cell Science, vol.121, issue.7, pp.121-989, 2008.
DOI : 10.1242/jcs.020693

V. Katrin, Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein, Hum Mutat, issue.6, pp.30-1003, 2009.

C. Preisinger, YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3{zeta}, J. Cell Biol, vol.54, issue.7, pp.164-1009, 2004.

K. Katagiri, M. Imamura, T. Kinashi, and J. P. , Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex Ezrin Regulates E-Cadherin-dependent Adherens Junction Assembly through Rac1 Activation, Nat Immunol Dev Cell Mol. Biol. Cell, vol.7, issue.565, pp.919-947, 2003.

A. Londesborough, LKB1 in endothelial cells is required for angiogenesis and TGF??-mediated vascular smooth muscle cell recruitment, Development, vol.135, issue.13, pp.2331-2339, 2008.
DOI : 10.1242/dev.017038

B. M. Hogan, ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish, Human Molecular Genetics, vol.17, issue.16, pp.17-2424, 2008.
DOI : 10.1093/hmg/ddn142

J. Zhang, Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation, Human Molecular Genetics, vol.10, issue.25, pp.10-2953, 2001.
DOI : 10.1093/hmg/10.25.2953

J. S. Zawistowski, KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis, Human Molecular Genetics, vol.11, issue.4, pp.389-96, 2002.
DOI : 10.1093/hmg/11.4.389

D. D. Chang, Integrin, The Journal of Cell Biology, vol.161, issue.5, pp.1149-57, 1997.
DOI : 10.1006/bbrc.1995.2285

D. Bouvard, Disruption of focal adhesions by integrin cytoplasmic domain-associated protein-1 alpha, J Biol Chem, issue.8, pp.278-6567, 2003.

X. A. Zhang and M. E. Hemler, Interaction of the Integrin ??1 Cytoplasmic Domain with ICAP-1 Protein, Journal of Biological Chemistry, vol.274, issue.1, pp.11-20, 1999.
DOI : 10.1074/jbc.274.1.11

A. Millon-fremillon, -integrin affinity, The Journal of Cell Biology, vol.115, issue.2, pp.427-468, 2008.
DOI : 10.1074/jbc.274.1.11

URL : https://hal.archives-ouvertes.fr/inserm-00166352

J. M. Peter, Integrin cytoplasmic domain-associated protein-1 (ICAP-1) interacts with the ROCK-I kinase at the plasma membrane, J Cell Physiol, vol.208, issue.3, pp.620-628, 2006.

D. Bouvard, Defective osteoblast function in ICAP-1-deficient mice, Development, vol.134, issue.14, pp.2615-2640, 2007.
DOI : 10.1242/dev.000877

URL : https://hal.archives-ouvertes.fr/inserm-00166116

J. Zhang, KRIT1 MODULATES ??1-INTEGRIN-MEDIATED ENDOTHELIAL CELL PROLIFERATION, Neurosurgery, vol.63, issue.3, pp.571-579, 2008.
DOI : 10.1227/01.NEU.0000325255.30268.B0

B. Geiger, J. P. Spatz, and A. D. Bershadsky, Environmental sensing through focal adhesions, Nature Reviews Molecular Cell Biology, vol.8, issue.1, pp.21-33, 2009.
DOI : 10.1038/nrm2593

M. Leiss, The role of integrin binding sites in fibronectin matrix assembly in vivo, Current Opinion in Cell Biology, vol.20, issue.5, pp.502-507, 2008.
DOI : 10.1016/j.ceb.2008.06.001

H. Tanjore, ??1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis, Developmental Dynamics, vol.121, issue.1, pp.75-82, 2008.
DOI : 10.1002/dvdy.21385

T. R. Carlson, Cell-autonomous requirement for {beta}1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice, Development, issue.12, pp.135-2193, 2008.

L. Lei, Endothelial Expression of 1 Integrin Is Required for Embryonic Vascular Patterning and Postnatal Vascular Remodeling, Molecular and Cellular Biology, vol.28, issue.2, pp.794-802, 2008.
DOI : 10.1128/MCB.00443-07

G. E. Davis and D. R. Senger, Endothelial Extracellular Matrix: Biosynthesis, Remodeling, and Functions During Vascular Morphogenesis and Neovessel Stabilization, Circulation Research, vol.97, issue.11, pp.97-1093, 2005.
DOI : 10.1161/01.RES.0000191547.64391.e3

M. L. Iruela-arispe and G. E. Davis, Cellular and Molecular Mechanisms of Vascular Lumen Formation, Developmental Cell, vol.16, issue.2, pp.222-231, 2009.
DOI : 10.1016/j.devcel.2009.01.013

S. Astrof and R. O. Hynes, Fibronectins in vascular morphogenesis, Angiogenesis, vol.11, issue.Suppl 1, p.76, 2009.
DOI : 10.1007/s10456-009-9136-6

X. Zhou, Fibronectin fibrillogenesis regulates three-dimensional neovessel formation, Genes & Development, vol.22, issue.9, pp.1231-1274, 2008.
DOI : 10.1101/gad.1643308

Y. Mao and J. E. Schwarzbauer, Fibronectin fibrillogenesis, a cell-mediated matrix assembly process, Matrix Biology, vol.24, issue.6, pp.389-399, 2005.
DOI : 10.1016/j.matbio.2005.06.008

C. F. Deroanne, C. M. Lapiere, and B. V. Nusgens, In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton, Cardiovascular Research, vol.49, issue.3, pp.647-658, 2001.
DOI : 10.1016/S0008-6363(00)00233-9

J. Sottile, Fibronectin-dependent collagen I deposition modulates the cell response to fibronectin, AJP: Cell Physiology, vol.293, issue.6, pp.1934-1980, 2007.
DOI : 10.1152/ajpcell.00130.2007

S. Lee, Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors, The Journal of Cell Biology, vol.266, issue.4, pp.681-91, 2005.
DOI : 10.1161/01.CIR.93.8.1493

K. J. Bayless, G. E. Davis-garmy-susini, and B. , The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices Integrin alpha4beta1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation, J Cell Sci J Clin Invest, vol.115, issue.826, pp.1123-1159, 2002.

S. Abraham, Integrin ??1 Subunit Controls Mural Cell Adhesion, Spreading, and Blood Vessel Wall Stability, Circulation Research, vol.102, issue.5, pp.562-70, 2008.
DOI : 10.1161/CIRCRESAHA.107.167908

A. Grazioli, Defective blood vessel development and pericyte/pvSMC distribution in ??4 integrin-deficient mouse embryos, Developmental Biology, vol.293, issue.1, pp.165-77, 2006.
DOI : 10.1016/j.ydbio.2006.01.026

L. G. Yu, Galectin-3 Interaction with Thomsen-Friedenreich Disaccharide on Cancer-associated MUC1 Causes Increased Cancer Cell Endothelial Adhesion, Journal of Biological Chemistry, vol.282, issue.1, pp.773-81, 2007.
DOI : 10.1074/jbc.M606862200

J. Friedrichs, Galectin-3 regulates integrin alpha2beta1-mediated adhesion to collagen-I and -IV, J Biol Chem, issue.47, pp.283-32264, 2008.

M. Cohen, Dynamic study of the transition from hyaluronan- to integrin-mediated adhesion in chondrocytes, The EMBO Journal, vol.82, issue.2, pp.302-313, 2006.
DOI : 10.1038/35008607