B. Bloem, J. Hausdorff, J. Visser, and N. Giladi, Falls and freezing of gait in Parkinson's disease: A review of two interconnected, episodic phenomena, Movement Disorders, vol.16, issue.8, pp.871-884, 2004.
DOI : 10.1002/mds.20115

?. Garcia and E. Rill, The pedunculopontine nucleus, Progress in Neurobiology, vol.36, issue.5, pp.363-389, 1991.
DOI : 10.1016/0301-0082(91)90016-T

M. Mesulam, E. Mufson, A. Levey, and B. Wainer, Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry, Neuroscience, vol.12, issue.3, pp.669-686, 1984.
DOI : 10.1016/0306-4522(84)90163-5

K. Jahn, Imaging human supraspinal locomotor centers in brainstem and cerebellum, NeuroImage, vol.39, issue.2, pp.786-792, 2008.
DOI : 10.1016/j.neuroimage.2007.09.047

M. Bakker, Motor imagery of foot dorsiflexion and gait: Effects on corticospinal excitability, Clinical Neurophysiology, vol.119, issue.11, pp.2519-2527, 2008.
DOI : 10.1016/j.clinph.2008.07.282

K. Iseki, T. Hanakawa, J. Shinozaki, M. Nankaku, and H. Fukuyama, Neural mechanisms involved in mental imagery and observation of gait, NeuroImage, vol.41, issue.3, pp.1021-1031, 2008.
DOI : 10.1016/j.neuroimage.2008.03.010

E. Hirsch, G. Orieux, M. Muriel, C. Francois, and J. Feger, Nondopaminergic neurons in Parkinson's disease

R. Zweig, W. Jankel, J. Hedreen, R. Mayeux, and D. Price, The pedunculopontine nucleus in Parkinson's disease, Annals of Neurology, vol.24, issue.1, pp.41-46, 1989.
DOI : 10.1002/ana.410260106

P. Pahapill and A. Lozano, The pedunculopontine nucleus and Parkinson's disease, Brain, vol.123, issue.9, pp.1767-1783, 2000.
DOI : 10.1093/brain/123.9.1767

P. Plaha and S. Gill, Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson??s disease, NeuroReport, vol.16, issue.17, pp.1883-1887, 2005.
DOI : 10.1097/01.wnr.0000187637.20771.a0

A. Stefani, Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease, Brain, vol.130, issue.6, pp.1596-1607, 2007.
DOI : 10.1093/brain/awl346

L. Zrinzo, Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization, Brain, vol.131, issue.6, pp.1588-1598, 2008.
DOI : 10.1093/brain/awn075

M. Ferraye, Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease, Brain, vol.133, issue.1, pp.205-214, 2010.
DOI : 10.1093/brain/awp229

E. Moro, Unilateral pedunculopontine stimulation improves falls in Parkinson's disease, Brain, vol.133, issue.1, pp.215-224, 2010.
DOI : 10.1093/brain/awp261

B. Piallat, Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons, Neuroscience, vol.158, issue.4, pp.1201-1205, 2009.
DOI : 10.1016/j.neuroscience.2008.10.046

URL : https://hal.archives-ouvertes.fr/inserm-00536386

M. Herrero, E. Hirsch, ?. Javoy, F. Agid, J. Obeso et al., Differential vulnerability to?tetrahydropyridine of dopaminergic and cholinergic neurons in the monkey mesopontine tegmentum, Brain Res, vol.2, issue.62412, pp.1-4, 1993.

C. Heise, Z. Teo, B. Wallace, K. Ashkan, A. Benabid et al., Cell survival patterns in the pedunculopontine tegmental nucleus of methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys and 6OHDA-lesioned rats: evidence for differences to idiopathic Parkinson disease patients?, Anatomy and Embryology, vol.26, issue.S1, pp.287-302, 2005.
DOI : 10.1007/s00429-005-0053-1

URL : https://hal.archives-ouvertes.fr/inserm-00391009

M. Luquin, Recovery of Chronic Parkinsonian Monkeys by Autotransplants of Carotid Body Cell Aggregates into Putamen, Neuron, vol.22, issue.4, pp.743-750, 1999.
DOI : 10.1016/S0896-6273(00)80733-3

A. Ovadia, Z. Zhang, and D. Gash, Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys, Neurobiology of Aging, vol.16, issue.6, pp.931-937, 1995.
DOI : 10.1016/0197-4580(95)02012-8

M. Shik, F. Severin, and G. Orlovskii, Control of walking and running by means of electric stimulation of the midbrain, Biofizika, vol.11, issue.4, pp.659-666, 1966.

K. Takakusaki, T. Habaguchi, J. Ohtinata-sugimoto, K. Saitoh, and T. Sakamoto, Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction, Neuroscience, vol.119, issue.1, pp.293-308, 2003.
DOI : 10.1016/S0306-4522(03)00095-2

S. Grillner, Control of locomotion in bipeds, tetrapods and fish Handbook of Physiology -the nervous system II, pp.1199-1236

P. Winn, Experimental studies of pedunculopontine functions: Are they motor, sensory or integrative?, Parkinsonism & Related Disorders, vol.14, issue.2, pp.194-198, 2008.
DOI : 10.1016/j.parkreldis.2008.04.030

W. Inglis and P. Winn, The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation, Progress in Neurobiology, vol.47, issue.1, pp.1-29, 1995.
DOI : 10.1016/0301-0082(95)00013-L

W. Inglis, M. Olmstead, and T. Robbins, Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions, Behavioural Brain Research, vol.123, issue.2, pp.117-131, 2001.
DOI : 10.1016/S0166-4328(01)00181-4

H. Alderson, M. Latimer, and P. Winn, A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: excitotoxic lesions have differential effects on locomotion and the response to nicotine, Brain Structure and Function, vol.436, issue.1-2, pp.247-253, 2008.
DOI : 10.1007/s00429-008-0174-4

L. Munro-davies, J. Winter, T. Aziz, and J. Stein, The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia, Experimental Brain Research, vol.129, issue.4, pp.511-517, 1999.
DOI : 10.1007/s002210050921

J. Kojima, Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey, Neuroscience Letters, vol.226, issue.2, pp.111-114, 1997.
DOI : 10.1016/S0304-3940(97)00254-1

M. Matsumura and Y. Yamaji, The Role of the Pedunculopontine Tegmental Nucleus in Experimental Parkinsonism in Primates, Stereotactic and Functional Neurosurgery, vol.77, issue.1-4, pp.1-4108, 2001.
DOI : 10.1159/000064614

P. Winn, T. Stone, M. Latimer, M. Hastings, and A. Clark, A comparison of excitotoxic lesions of the basal forebrain by kainate, quinolinate, ibotenate, N-methyl-d-aspartate or quisqualate, and the effects on toxicity of 2-amino-5-phosphonovaleric acid and kynurenic acid in the rat, British Journal of Pharmacology, vol.41, issue.4, pp.904-908, 1991.
DOI : 10.1111/j.1476-5381.1991.tb12274.x

K. Haaland and D. Harrington, Hemispheric asymmetry of movement, Current Opinion in Neurobiology, vol.6, issue.6, pp.796-800, 1996.
DOI : 10.1016/S0959-4388(96)80030-4

K. Sacco, F. Cauda, L. Cerliani, D. Mate, S. Duca et al., Motor imagery of walking following training in locomotor attention. The effect of ???the tango lesson???, NeuroImage, vol.32, issue.3, pp.1441-1449, 2006.
DOI : 10.1016/j.neuroimage.2006.05.018

J. Rinne, S. Ma, M. Lee, Y. Collan, and M. Roytta, Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson's disease is related to disability of the patients, Parkinsonism & Related Disorders, vol.14, issue.7, pp.553-557, 2008.
DOI : 10.1016/j.parkreldis.2008.01.006

J. Zhang, S. Sampogna, F. Morales, and M. Chase, Age-related changes in cholinergic neurons in the laterodorsal and the pedunculo-pontine tegmental nuclei of cats: A combined light and electron microscopic study, Brain Research, vol.1052, issue.1, pp.47-55, 2005.
DOI : 10.1016/j.brainres.2005.06.008

O. George, Smad-dependent alterations of PPT cholinergic neurons as a pathophysiological mechanism of age-related sleep-dependent memory impairments, Neurobiology of Aging, vol.27, issue.12, pp.1848-1858, 2006.
DOI : 10.1016/j.neurobiolaging.2005.10.014

L. Sheffield and N. Berman, Microglial Expression of MHC Class II Increases in Normal Aging of Nonhuman Primates, Neurobiology of Aging, vol.19, issue.1, pp.47-55, 1998.
DOI : 10.1016/S0197-4580(97)00168-1

B. Lavoie and A. Parent, Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra, The Journal of Comparative Neurology, vol.26, issue.2, pp.232-241, 1994.
DOI : 10.1002/cne.903440205

A. Rolland, Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication, Journal of Neurochemistry, vol.50, issue.4, pp.1321-1329, 2009.
DOI : 10.1111/j.1471-4159.2009.06220.x

R. Oldfield, The assessment and analysis of handedness: The Edinburgh inventory, Neuropsychologia, vol.9, issue.1, pp.97-113, 1971.
DOI : 10.1016/0028-3932(71)90067-4

K. Friston, Event-Related fMRI: Characterizing Differential Responses, NeuroImage, vol.7, issue.1, pp.30-40, 1998.
DOI : 10.1006/nimg.1997.0306

K. Friston, O. Josephs, G. Rees, and R. Turner, Nonlinear event-related responses in fMRI, Magnetic Resonance in Medicine, vol.4, issue.1, pp.41-52, 1998.
DOI : 10.1002/mrm.1910390109

A. Hughes, S. Daniel, L. Kilford, and A. Lees, Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases., Journal of Neurology, Neurosurgery & Psychiatry, vol.55, issue.3, pp.181-184, 1992.
DOI : 10.1136/jnnp.55.3.181

S. Fahn, Tolcapone: COMT inhibition for the treatment of Parkinson's disease, Neurology, vol.50, issue.Issue 5, Supplement 5, pp.1-8, 1998.
DOI : 10.1212/WNL.50.5_Suppl_5.S1

S. Clark, Fusion of diphtheria toxin and urotensin II produces a neurotoxin selective for cholinergic neurons in the rat mesopontine tegmentum, Journal of Neurochemistry, vol.18, issue.1
DOI : 10.1016/0301-0082(91)90006-M

G. Percheron, J. Yelnik, and C. François, Systems of coordinates for stereotactic surgery and cerebral cartography: advantages of ventricular systems in monkeys, Journal of Neuroscience Methods, vol.17, issue.2-3, pp.2-369, 1986.
DOI : 10.1016/0165-0270(86)90060-9

E. Hirsch, A. Graybiel, C. Duyckaerts, ?. Javoy, and F. Agid, Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy., Proceedings of the National Academy of Sciences, vol.84, issue.16, pp.5976-5980, 1987.
DOI : 10.1073/pnas.84.16.5976

C. Barcia, Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure, Glia, vol.373, issue.4, pp.402-409, 2004.
DOI : 10.1002/glia.20015

A. Graybiel, E. Hirsch, and Y. Agid, Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity., Proceedings of the National Academy of Sciences, vol.84, issue.1, pp.303-307, 1987.
DOI : 10.1073/pnas.84.1.303

C. Jan, Quantitative analysis of dopaminergic loss in relation to functional territories in MPTP-treated monkeys, European Journal of Neuroscience, vol.262, issue.7, pp.2082-2086, 2003.
DOI : 10.1136/jnnp.68.3.313