S. Groh, I. Marty, M. Ottolia, G. Prestipino, A. Chapel et al., Functional Interaction of the Cytoplasmic Domain of Triadin with the Skeletal Ryanodine Receptor, Journal of Biological Chemistry, vol.274, issue.18, pp.12278-12283, 1999.
DOI : 10.1074/jbc.274.18.12278

Y. M. Kobayashi, B. A. Alseikhan, and L. R. Jones, Localization and Characterization of the Calsequestrin-binding Domain of Triadin 1: EVIDENCE FOR A CHARGED ??-STRAND IN MEDIATING THE PROTEIN-PROTEIN INTERACTION, Journal of Biological Chemistry, vol.275, issue.23, pp.17639-17685, 2000.
DOI : 10.1074/jbc.M002091200

D. W. Shin, J. Ma, and D. H. Kim, and interacts with triadin, FEBS Letters, vol.277, issue.2, pp.178-182, 2000.
DOI : 10.1016/S0014-5793(00)02246-8

L. Zhang, J. Kelley, G. Schmeisser, Y. M. Kobayashi, and L. R. Jones, Complex Formation between Junctin, Triadin, Calsequestrin, and the Ryanodine Receptor: PROTEINS OF THE CARDIAC JUNCTIONAL SARCOPLASMIC RETICULUM MEMBRANE, Journal of Biological Chemistry, vol.272, issue.37, pp.23389-23397, 1997.
DOI : 10.1074/jbc.272.37.23389

Y. M. Kobayashi and L. R. Jones, Identification of Triadin 1 as the Predominant Triadin Isoform Expressed in Mammalian Myocardium, Journal of Biological Chemistry, vol.274, issue.40, pp.28660-28668, 1999.
DOI : 10.1074/jbc.274.40.28660

I. Marty, D. Thevenon, C. Scotto, S. Groh, S. Sainnier et al., Cloning and Characterization of a New Isoform of Skeletal Muscle Triadin, Journal of Biological Chemistry, vol.275, issue.11, pp.8206-8212, 2000.
DOI : 10.1074/jbc.275.11.8206

S. Vassilopoulos, D. Thevenon, S. Smida-rezgui, J. Urbani-brocard, A. Chapel et al., Triadins Are Not Triad-specific Proteins: TWO NEW SKELETAL MUSCLE TRIADINS POSSIBLY INVOLVED IN THE ARCHITECTURE OF SARCOPLASMIC RETICULUM, Journal of Biological Chemistry, vol.280, issue.31, pp.28601-28609, 2005.
DOI : 10.1074/jbc.M501484200

URL : https://hal.archives-ouvertes.fr/inserm-00380236

D. Thevenon, S. Smida-rezgui, F. Chevessier, S. Groh, J. Henry-berger et al., Human skeletal muscle triadin: gene organization and cloning of the major isoform, Trisk 51, Biochemical and Biophysical Research Communications, vol.303, issue.2, pp.669-675, 2003.
DOI : 10.1016/S0006-291X(03)00406-6

I. Marty, J. Fauré, A. Fourest-lieuvin, S. Vassilopoulos, S. Oddoux et al., Triadin: what possible function 20 years later?, The Journal of Physiology, vol.45, issue.13, pp.3117-3138, 2009.
DOI : 10.1113/jphysiol.2009.171892

URL : https://hal.archives-ouvertes.fr/inserm-00410303

S. Rezgui, S. Vassilopoulos, S. Brocard, J. Platel, J. C. Bouron et al., Triadin (Trisk 95) Overexpression Blocks Excitation-Contraction Coupling in Rat Skeletal Myotubes, Journal of Biological Chemistry, vol.280, issue.47, pp.39302-39308, 2005.
DOI : 10.1074/jbc.M506566200

URL : https://hal.archives-ouvertes.fr/inserm-00381760

Y. Wang, X. Li, H. Duan, T. R. Fulton, J. P. Eu et al., Cell Calcium, pp.29-37, 2009.

J. Fodor, M. Gonczi, M. Sztretye, B. Dienes, T. Olah et al., signals in skeletal muscle cells in culture, The Journal of Physiology, vol.290, issue.Suppl., pp.5803-5818, 2008.
DOI : 10.1113/jphysiol.2008.160457

URL : https://hal.archives-ouvertes.fr/inserm-00516686

I. Marty, M. Robert, M. Ronjat, I. Bally, G. Arlaud et al., Localization of the N-terminal and C-terminal ends of triadin with respect to the sarcoplasmic reticulum membrane of rabbit skeletal muscle, Biochemical Journal, vol.307, issue.3, pp.769-774, 1995.
DOI : 10.1042/bj3070769

J. Lunardi, A. Dupuis, Y. Frobert, J. Grassi, and P. V. Vignais, -ATPase by monoclonal antibodies, FEBS Letters, vol.184, issue.1-2, pp.223-228, 1989.
DOI : 10.1016/0014-5793(89)80226-1

URL : https://hal.archives-ouvertes.fr/inserm-00954592

S. Pouvreau, L. Royer, J. Yi, G. Brum, G. Meissner et al., Ca2+ sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle, Proceedings of the National Academy of Sciences, vol.104, issue.12, pp.5235-5275, 2007.
DOI : 10.1073/pnas.0700748104

F. Galbiati, J. A. Engelman, D. Volonte, X. L. Zhang, C. Minetti et al., Caveolin-3 Null Mice Show a Loss of Caveolae, Changes in the Microdomain Distribution of the Dystrophin-Glycoprotein Complex, and T-tubule Abnormalities, Journal of Biological Chemistry, vol.276, issue.24, pp.21425-21433, 2001.
DOI : 10.1074/jbc.M100828200

H. Westerblad, A. J. Dahlstedt, and J. And-lännergren, Mechanisms underlying reduced maximum shortening velocity during fatigue of intact, single fibres of mouse muscle, The Journal of Physiology, vol.482, issue.1, pp.269-277, 1998.
DOI : 10.1111/j.1469-7793.1998.269bz.x

L. Vanhamme, A. Van-den-boogaart, and S. Van-huffel, Improved Method for Accurate and Efficient Quantification of MRS Data with Use of Prior Knowledge, Journal of Magnetic Resonance, vol.129, issue.1, pp.35-43, 1997.
DOI : 10.1006/jmre.1997.1244

D. L. Arnold, P. M. Matthews, and G. K. Radda, metabolic recovery after exercise and the assessment of mitochondrial functionin Vivo in human skeletal muscle by means of31P NMR, Magnetic Resonance in Medicine, vol.22, issue.3, pp.307-315, 1984.
DOI : 10.1002/mrm.1910010303

H. Takeshima, M. Iino, H. Takekura, M. Nishi, J. Kuno et al., Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene, Nature, vol.369, issue.6481, pp.556-559, 1994.
DOI : 10.1038/369556a0

R. G. Gregg, A. Messing, C. Strube, M. Beurg, R. Moss et al., Absence of the ?? subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the ??1 subunit and eliminates excitation-contraction coupling, Proceedings of the National Academy of Sciences, vol.93, issue.24, pp.13961-13966, 1996.
DOI : 10.1073/pnas.93.24.13961

C. Paolini, M. Quarta, A. Nori, S. Boncompagni, M. Canato et al., Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1, The Journal of Physiology, vol.257, issue.2, pp.767-84, 2007.
DOI : 10.1113/jphysiol.2007.138024

H. Takeshima, S. Komazaki, K. Hirose, M. Nishi, T. Noda et al., Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2, The EMBO Journal, vol.17, issue.12, pp.3309-3316, 1998.
DOI : 10.1093/emboj/17.12.3309

P. Tijskens, L. R. Jones, and C. Franzini-armstrong, Junctin and calsequestrin overexpression in cardiac muscle: the role of junctin and the synthetic and delivery pathways for the two proteins, Journal of Molecular and Cellular Cardiology, vol.35, issue.8, pp.961-974, 2003.
DOI : 10.1016/S0022-2828(03)00181-0

X. Zhao, M. Yoshida, L. Brotto, H. Takeshima, N. Weisleder et al., Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice, Physiological Genomics, vol.23, issue.1, pp.72-78, 2005.
DOI : 10.1152/physiolgenomics.00020.2005

S. Vassilopoulos, J. Brocard, L. Garcia, I. Marty, and A. Bouron, Cell Calcium FOOTNOTE The mouse mutant lines were established at the Mouse Clinical Institute, MCI/ICS) in the Targeted Mutagenesis and Transgenesis Department with funds from the, pp.179-185, 2007.

M. Rares, We thank Dr D. Metzger for his help in the design of triadin KO mouse construct. This work was supported by grants from Association, Française contre les Myopathies (AFM), and from Agence Nationale de la Recherche (ANR-Maladies rares) and Hungarian Research Found (OTKA K75604)

K. Ko and . Out, PCr, phosphocreatine; RyR, ryanodine receptor; SERCA, sarco-endoplasmic reticulum Ca 2+ ATPase

C. Panel, The same caffeine stimulation was performed in presence of 1µM thapsigargin, 0.5mM Cd 2+ , 0.1mM La 3+ , in WT and KO myotubes

. Hz, Values are shown as means ± SEM.. P-value is the result of a one-way repeated-measures ANOVA. The first time point