An object-based method for Rician noise estimation in MR images.

Abstract : The estimation of the noise level in MR images is used to assess the consistency of statistical analysis or as an input parameter in some image processing techniques. Most of the existing Rician noise estimation methods are based on background statistics, and as such are sensitive to ghosting artifacts. In this paper, a new object-based method is proposed. This method is based on the adaptation of the Median Absolute Deviation (MAD) estimator in the wavelet domain for Rician noise. The adaptation for Rician noise is performed by using only the wavelet coefficients corresponding to the object and by correcting the estimation with an iterative scheme based on the SNR of the image. A quantitative validation on synthetic phantom with artefacts is presented and a new validation framework is proposed to perform quantitative validation on real data. The results show the accuracy and the robustness of the proposed method.
keyword : rician noise MRI
Type de document :
Article dans une revue
Medical image computing and computer-assisted intervention : MICCAI .. International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2009, 12 (Pt 2), pp.601-8. 〈10.1007/978-3-642-04271-3_73〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00515408
Contributeur : Pierrick Coupé <>
Soumis le : lundi 6 septembre 2010 - 18:08:01
Dernière modification le : vendredi 13 avril 2018 - 19:54:13
Document(s) archivé(s) le : mardi 23 octobre 2012 - 15:36:58

Fichier

MICCAI09STDFinal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierrick Coupé, Jose Vicente Manjon, Elias Gedamu, Douglas Arnold, Montserrat Robles, et al.. An object-based method for Rician noise estimation in MR images.. Medical image computing and computer-assisted intervention : MICCAI .. International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2009, 12 (Pt 2), pp.601-8. 〈10.1007/978-3-642-04271-3_73〉. 〈inserm-00515408〉

Partager

Métriques

Consultations de la notice

184

Téléchargements de fichiers

182