P. Escoubas, B. Sollod, and G. F. King, Venom landscapes: Mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach, Toxicon, vol.47, issue.6, pp.650-663, 2006.
DOI : 10.1016/j.toxicon.2006.01.018

B. M. Olivera, C. , and L. J. , Conotoxins, in retrospect, Toxicon, vol.39, issue.1, pp.7-14, 2001.
DOI : 10.1016/S0041-0101(00)00157-4

L. D. Possani, B. Becerril, M. Delepierre, and J. Tytgat, Scorpion toxins specific for Na+-channels, European Journal of Biochemistry, vol.22, issue.2, pp.287-300, 1999.
DOI : 10.1016/0076-6879(90)83018-5

URL : https://hal.archives-ouvertes.fr/pasteur-00370477

P. T. Tan, K. N. Srinivasan, S. H. Seah, J. L. Koh, T. W. Tan et al., Accurate prediction of scorpion toxin functional properties from primary structures, Journal of Molecular Graphics and Modelling, vol.24, issue.1, pp.17-24, 2005.
DOI : 10.1016/j.jmgm.2005.01.003

C. Z. Wang, C. , and C. W. , Conus Peptides--A Rich Pharmaceutical Treasure, Acta Biochimica et Biophysica Sinica, vol.36, issue.11, pp.713-723, 2004.
DOI : 10.1093/abbs/36.11.713

I. W. Jones, J. Barik, M. J. Neill, and S. Wonnacott, Alpha bungarotoxin-1.4nm gold: a novel conjugate for visualising the precise subcellular distribution of alpha 7* nicotinic acetylcholine receptors, Journal of Neuroscience Methods, vol.134, issue.1, pp.65-74, 2004.
DOI : 10.1016/j.jneumeth.2003.11.001

T. Q. Vu, S. Chowdhury, N. J. Muni, H. Qian, R. F. Standaert et al., Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment, Biomaterials, vol.26, issue.14, pp.1895-1903, 2005.
DOI : 10.1016/j.biomaterials.2004.06.007

I. K. Park, J. Lasiene, S. H. Chou, P. J. Horner, and S. H. Pun, Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine), The Journal of Gene Medicine, vol.105, issue.8, pp.691-702, 2007.
DOI : 10.1002/jgm.1062

U. Maskos, K. Kissa, C. St-cloment, P. Brulet, R. Hayek et al., Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice, Proceedings of the National Academy of Sciences, vol.99, issue.15, pp.10120-10125, 1995.
DOI : 10.1073/pnas.152266799

A. Mosbah, R. Kharrat, Z. Fajloun, J. G. Renisio, E. Blanc et al., A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.436-442, 2000.
DOI : 10.1002/1097-0134(20000815)40:3<436::AID-PROT90>3.0.CO;2-9

D. Shahbazzadeh, N. Srairi-abid, W. Feng, N. Ram, L. Borchani et al., channels, Biochemical Journal, vol.404, issue.1, pp.89-96, 2007.
DOI : 10.1042/BJ20061404

URL : https://hal.archives-ouvertes.fr/inserm-00378038

Z. Fajloun, R. Kharrat, L. Chen, C. Lecomte, D. Luccio et al., release channel/ryanodine receptors, FEBS Letters, vol.274, issue.2-3, pp.179-185, 2000.
DOI : 10.1016/S0014-5793(00)01239-4

X. Altafaj, J. France, J. Almassy, I. Jona, D. Rossi et al., Maurocalcine interacts with the cardiac ryanodine receptor without inducing channel modification, Biochemical Journal, vol.406, issue.2, pp.309-315, 2007.
DOI : 10.1042/BJ20070453

URL : https://hal.archives-ouvertes.fr/hal-00478782

B. E. Ehrlich, E. Kaftan, S. Bezprozvannaya, and I. Bezprozvanny, The pharmacology of intracellular Ca2+-release channels, Trends in Pharmacological Sciences, vol.15, issue.5, pp.145-149, 1994.
DOI : 10.1016/0165-6147(94)90074-4

E. Esteve, S. Smida-rezgui, S. Sarkozi, C. Szegedi, I. Regaya et al., Critical Amino Acid Residues Determine the Binding Affinity and the Ca2+ Release Efficacy of Maurocalcine in Skeletal Muscle Cells, Journal of Biological Chemistry, vol.278, issue.39, pp.37822-37831, 2003.
DOI : 10.1074/jbc.M305798200

X. Altafaj, W. Cheng, E. Esteve, J. Urbani, D. Grunwald et al., 1.1 Subunit Share Common Binding Sites on the Skeletal Ryanodine Receptor, Journal of Biological Chemistry, vol.280, issue.6, pp.4013-4016, 2005.
DOI : 10.1074/jbc.C400433200

URL : https://hal.archives-ouvertes.fr/inserm-00381691

L. Chen, E. Esteve, J. M. Sabatier, M. Ronjat, M. De-waard et al., Maurocalcine and Peptide A Stabilize Distinct Subconductance States of Ryanodine Receptor Type 1, Revealing a Proportional Gating Mechanism, Journal of Biological Chemistry, vol.278, issue.18, pp.16095-16106, 2003.
DOI : 10.1074/jbc.M209501200

E. Esteve, K. Mabrouk, A. Dupuis, S. Smida-rezgui, X. Altafaj et al., Transduction of the Scorpion Toxin Maurocalcine into Cells: EVIDENCE THAT THE TOXIN CROSSES THE PLASMA MEMBRANE, Journal of Biological Chemistry, vol.280, issue.13, pp.12833-12839, 2005.
DOI : 10.1074/jbc.M412521200

URL : https://hal.archives-ouvertes.fr/hal-00067701

M. Zorko and U. Langel, Cell-penetrating peptides: mechanism and kinetics of cargo delivery, Advanced Drug Delivery Reviews, vol.57, issue.4, pp.529-545, 2005.
DOI : 10.1016/j.addr.2004.10.010

Z. Mi, J. Mai, X. Lu, and P. D. Robbins, Characterization of a Class of Cationic Peptides Able to Facilitate Efficient Protein Transduction in Vitro and in Vivo, Molecular Therapy, vol.2, issue.4, pp.339-347, 2000.
DOI : 10.1006/mthe.2000.0137

M. Green and P. M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell, vol.55, issue.6, pp.1179-1188, 1988.
DOI : 10.1016/0092-8674(88)90262-0

A. D. Frankel and C. O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, vol.55, issue.6, pp.1189-1193, 1988.
DOI : 10.1016/0092-8674(88)90263-2

A. Dorn, M. Affolter, W. J. Gehring, and W. Leupin, Homeodomain proteins in development and therapy, Pharmacology & Therapeutics, vol.61, issue.1-2, pp.155-184, 1994.
DOI : 10.1016/0163-7258(94)90061-2

M. Lundberg and M. Johansson, Positively Charged DNA-Binding Proteins Cause Apparent Cell Membrane Translocation, Biochemical and Biophysical Research Communications, vol.291, issue.2, pp.367-371, 2002.
DOI : 10.1006/bbrc.2002.6450

D. J. Mitchell, D. T. Kim, L. Steinman, C. G. Fathman, R. et al., Polyarginine enters cells more efficiently than other polycationic homopolymers, Journal of Peptide Research, vol.55, issue.5, pp.318-325, 2000.
DOI : 10.1139/bcb-76-2-3-235

S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka et al., Arginine-rich Peptides: AN ABUNDANT SOURCE OF MEMBRANE-PERMEABLE PEPTIDES HAVING POTENTIAL AS CARRIERS FOR INTRACELLULAR PROTEIN DELIVERY, Journal of Biological Chemistry, vol.276, issue.8, pp.5836-5840, 2001.
DOI : 10.1074/jbc.M007540200

P. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman et al., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters, Proceedings of the National Academy of Sciences, vol.97, issue.24, pp.13003-13008, 2000.
DOI : 10.1073/pnas.97.24.13003

J. Oehlke, A. Scheller, B. Wiesner, E. Krause, M. Beyermann et al., Cellular uptake of an ??-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1414, issue.1-2, pp.127-139, 1998.
DOI : 10.1016/S0005-2736(98)00161-8

A. Scheller, J. Oehlke, B. Wiesner, M. Dathe, E. Krause et al., Structural requirements for cellular uptake of ??-helical amphipathic peptides, Journal of Peptide Science, vol.4, issue.4, pp.185-194, 1999.
DOI : 10.1002/(SICI)1099-1387(199904)5:4<185::AID-PSC184>3.0.CO;2-9

M. Rhee, D. , and P. , Mechanism of Uptake of C105Y, a Novel Cell-penetrating Peptide, Journal of Biological Chemistry, vol.281, issue.2, pp.1233-1240, 2006.
DOI : 10.1074/jbc.M509813200

S. Console, C. Marty, C. Garcia-echeverria, R. Schwendener, and K. Ballmer-hofer, Antennapedia and HIV Transactivator of Transcription (TAT) "Protein Transduction Domains" Promote Endocytosis of High Molecular Weight Cargo upon Binding to Cell Surface Glycosaminoglycans, Journal of Biological Chemistry, vol.278, issue.37, pp.35109-35114, 2003.
DOI : 10.1074/jbc.M301726200

A. Ziegler and J. Seelig, Interaction of the Protein Transduction Domain of HIV-1 TAT with Heparan Sulfate: Binding Mechanism and Thermodynamic Parameters, Biophysical Journal, vol.86, issue.1, pp.254-263, 2004.
DOI : 10.1016/S0006-3495(04)74101-6

P. E. Thoren, D. Persson, M. Karlsson, and B. Norden, The Antennapedia peptide penetratin translocates across lipid bilayers - the first direct observation, FEBS Letters, vol.10, issue.3, pp.265-268, 2000.
DOI : 10.1016/S0014-5793(00)02072-X

E. Vives, J. P. Richard, C. Rispal, and B. Lebleu, TAT Peptide Internalization: Seeking the Mechanism of Entry, Current Protein & Peptide Science, vol.4, issue.2, pp.125-132, 2003.
DOI : 10.2174/1389203033487306

I. M. Kaplan, J. S. Wadia, and S. F. Dowdy, Cationic TAT peptide transduction domain enters cells by macropinocytosis, Journal of Controlled Release, vol.102, issue.1, pp.247-253, 2005.
DOI : 10.1016/j.jconrel.2004.10.018

R. Trehin and H. P. Merkle, Chances and pitfalls of cell penetrating peptides for cellular drug delivery, European Journal of Pharmaceutics and Biopharmaceutics, vol.58, issue.2, pp.209-223, 2004.
DOI : 10.1016/j.ejpb.2004.02.018

T. Holm, H. Johansson, P. Lundberg, M. Pooga, M. Lindgren et al., Studying the uptake of cell-penetrating peptides, Nature Protocols, vol.12, issue.2, pp.1001-1005, 2006.
DOI : 10.1016/j.peptides.2006.01.006

J. K. Vasir and V. Labhasetwar, Biodegradable nanoparticles for cytosolic delivery of therapeutics???, Advanced Drug Delivery Reviews, vol.59, issue.8, pp.718-728, 2007.
DOI : 10.1016/j.addr.2007.06.003

M. F. Ross and M. P. Murphy, Cell-penetrating peptides are excluded from the mitochondrial matrix, Biochemical Society Transactions, vol.32, issue.6, pp.1072-1074, 2004.
DOI : 10.1042/BST0321072

J. P. Richard, K. Melikov, H. Brooks, P. Prevot, B. Lebleu et al., Cellular Uptake of Unconjugated TAT Peptide Involves Clathrin-dependent Endocytosis and Heparan Sulfate Receptors, Journal of Biological Chemistry, vol.280, issue.15, pp.15300-15306, 2005.
DOI : 10.1074/jbc.M401604200

J. J. Turner, G. D. Ivanova, B. Verbeure, D. Williams, A. A. Arzumanov et al., Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells, Nucleic Acids Research, vol.33, issue.21, pp.6837-6849, 2005.
DOI : 10.1093/nar/gki991

M. F. Ross, A. Filipovska, R. A. Smith, M. J. Gait, and M. P. Murphy, Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers, Biochemical Journal, vol.383, issue.3, pp.457-468, 2004.
DOI : 10.1042/BJ20041095

M. Mae and U. Langel, Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery, Current Opinion in Pharmacology, vol.6, issue.5, pp.509-514, 2006.
DOI : 10.1016/j.coph.2006.04.004

M. C. Morris, L. Chaloin, J. Mery, F. Heitz, and G. Divita, A novel potent strategy for gene delivery using a single peptide vector as a carrier, Nucleic Acids Research, vol.27, issue.17, pp.3510-3517, 1999.
DOI : 10.1093/nar/27.17.3510

M. C. Morris, E. Gros, G. Aldrian-herrada, M. Choob, J. Archdeacon et al., A non-covalent peptide-based carrier for in vivo delivery of DNA mimics, Nucleic Acids Research, vol.35, issue.7, pp.49-53, 2007.
DOI : 10.1093/nar/gkm053

M. C. Morris, P. Vidal, L. Chaloin, F. Heitz, and G. Divita, A new peptide vector for efficient delivery of oligonucleotides into mammalian cells, Nucleic Acids Research, vol.25, issue.14, pp.2730-2736, 1997.
DOI : 10.1093/nar/25.14.2730

B. Lebleu, H. M. Moulton, R. Abes, G. D. Ivanova, S. Abes et al., Adv Drug Deliv Rev 55, Juliano, R. L. Ann N Y Acad Sci, vol.1082, pp.18-26, 2006.

J. Zielinski, K. Kilk, T. Peritz, T. Kannanayakal, K. Y. Miyashiro et al., In vivo identification of ribonucleoprotein-RNA interactions, Proceedings of the National Academy of Sciences, vol.103, issue.5, pp.1557-1562, 2006.
DOI : 10.1073/pnas.0510611103

E. Bleifuss, T. Kammertoens, A. Hutloff, D. Quarcoo, M. Dorner et al., The translocation motif of hepatitis B virus improves protein vaccination, Cellular and Molecular Life Sciences, vol.63, issue.5, pp.627-635, 2006.
DOI : 10.1007/s00018-005-5548-7

V. A. Sethuraman and Y. H. Bae, TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors, Journal of Controlled Release, vol.118, issue.2, pp.216-224, 2007.
DOI : 10.1016/j.jconrel.2006.12.008

Y. L. Tseng, J. J. Liu, H. , and R. L. , Translocation of Liposomes into Cancer Cells by Cell-Penetrating Peptides Penetratin and Tat: A Kinetic and Efficacy Study, Molecular Pharmacology, vol.62, issue.4, pp.864-872, 2002.
DOI : 10.1124/mol.62.4.864

T. Jiang, E. S. Olson, Q. T. Nguyen, M. Roy, P. A. Jennings et al., Tumor imaging by means of proteolytic activation of cell-penetrating peptides, Proceedings of the National Academy of Sciences, vol.101, issue.51, pp.17867-17872, 2004.
DOI : 10.1073/pnas.0408191101

J. Temsamani and P. Vidal, The use of cell-penetrating peptides for drug delivery, Drug Discovery Today, vol.9, issue.23, pp.1012-1019, 2004.
DOI : 10.1016/S1359-6446(04)03279-9

S. R. Schwarze, A. Ho, A. Vocero-akbani, and S. F. Dowdy, In Vivo Protein Transduction: Delivery of a Biologically Active Protein into the Mouse, Science, vol.285, issue.5433, pp.1569-1572, 1999.
DOI : 10.1126/science.285.5433.1569

S. Mouhat, B. Jouirou, A. Mosbah, M. De-waard, and J. M. Sabatier, Diversity of folds in animal toxins acting on ion channels, Biochemical Journal, vol.378, issue.3, pp.717-726, 2004.
DOI : 10.1042/bj20031860

S. Boisseau, K. Mabrouk, N. Ram, N. Garmy, V. Collin et al., Cell penetration properties of maurocalcine, a natural venom peptide active on the intracellular ryanodine receptor, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.3, pp.308-319, 2006.
DOI : 10.1016/j.bbamem.2006.02.007

URL : https://hal.archives-ouvertes.fr/inserm-00394156

K. Mabrouk, N. Ram, S. Boisseau, F. Strappazzon, A. Rehaim et al., Critical amino acid residues of maurocalcine involved in pharmacology, lipid interaction and cell penetration, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.10, pp.2528-2540, 2007.
DOI : 10.1016/j.bbamem.2007.06.030

URL : https://hal.archives-ouvertes.fr/inserm-00378029

H. Noguchi, M. Matsushita, S. Matsumoto, Y. F. Lu, H. Matsui et al., Mechanism of PDX-1 protein transduction, Biochemical and Biophysical Research Communications, vol.332, issue.1, pp.68-74, 2005.
DOI : 10.1016/j.bbrc.2005.04.092

F. D. Nascimento, M. A. Hayashi, A. Kerkis, V. Oliveira, E. B. Oliveira et al., Crotamine Mediates Gene Delivery into Cells through the Binding to Heparan Sulfate Proteoglycans, Journal of Biological Chemistry, vol.282, issue.29, pp.21349-21360, 2007.
DOI : 10.1074/jbc.M604876200

N. Oguiura, M. Boni-mitake, and G. Radis-baptista, New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom, Toxicon, vol.46, issue.4, pp.363-370, 2005.
DOI : 10.1016/j.toxicon.2005.06.009

R. Trehin, H. M. Nielsen, H. G. Jahnke, U. Krauss, A. G. Beck-sickinger et al., Metabolic cleavage of cell-penetrating peptides in contact with epithelial models: human calcitonin (hCT)-derived peptides, Tat(47???57) and penetratin(43???58), Biochemical Journal, vol.382, issue.3, pp.945-956, 2004.
DOI : 10.1042/BJ20040238