L. Avois, N. Robinson, C. Saudan, N. Baume, P. Mangin et al., Central nervous system stimulants and sport practice, British Journal of Sports Medicine, vol.40, issue.Supplement 1, pp.16-20, 2006.
DOI : 10.1136/bjsm.2006.027557

B. Menachem and E. , Vagus-nerve stimulation for the treatment of epilepsy, The Lancet Neurology, vol.1, issue.8, pp.477-482, 2002.
DOI : 10.1016/S1474-4422(02)00220-X

T. R. Bernik, S. G. Friedman, M. Ochani, R. Diraimo, S. Susarla et al., Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion, Journal of Vascular Surgery, vol.36, issue.6, pp.1231-1236, 2002.
DOI : 10.1067/mva.2002.129643

A. Biraben, S. Guerin, E. Bobillier, D. Val-laillet, and C. Malbert, Central activation after chronic vagus nerve stimulation in pigs: Contribution of functional imaging, pp.441-448, 2008.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI, NeuroImage, vol.31, issue.4, pp.1536-1548, 2006.
DOI : 10.1016/j.neuroimage.2006.02.048

B. Bonaz, The Cholinergic Anti-Inflammatory Pathway and the Gastrointestinal Tract, Gastroenterology, vol.133, issue.4, 2007.
DOI : 10.1053/j.gastro.2007.08.061

URL : https://hal.archives-ouvertes.fr/inserm-00387973

L. V. Borovikova, S. Ivanova, M. Zhang, H. Yang, G. I. Botchkina et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, vol.405, pp.458-462, 2000.

J. H. Chae, Z. Nahas, M. Lomarev, S. Denslow, J. P. Lorberbaum et al., A review of functional neuroimaging studies of vagus nerve stimulation (VNS), Journal of Psychiatric Research, vol.37, issue.6, 2003.
DOI : 10.1016/S0022-3956(03)00074-8

M. S. Dagli, J. E. Ingeholm, and J. V. Haxby, Localization of Cardiac-Induced Signal Change in fMRI, NeuroImage, vol.9, issue.4, pp.407-415, 1999.
DOI : 10.1006/nimg.1998.0424

. Reyt, Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation, NeuroImage, vol.52, issue.4
DOI : 10.1016/j.neuroimage.2010.05.021

URL : https://hal.archives-ouvertes.fr/inserm-00498678

O. David, I. Guillemain, S. Saillet, S. Reyt, C. Deransart et al., Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation, PLoS Biology, vol.54, issue.12, pp.2683-2697, 2008.
DOI : 10.1371/journal.pbio.0060315.sd002

URL : https://hal.archives-ouvertes.fr/inserm-00356680

J. C. De-munck, S. I. Goncalves, T. J. Faes, J. P. Kuijer, P. J. Pouwels et al., A study of the brain's resting state based on alpha band power, heart rate and fMRI, NeuroImage, vol.42, issue.1, pp.112-121, 2008.
DOI : 10.1016/j.neuroimage.2008.04.244

S. Dedeurwaerdere, B. Cornelissen, K. Van-laere, K. Vonck, E. Achten et al., Small animal positron emission tomography during vagus nerve stimulation in rats: A pilot study, Epilepsy Research, vol.67, issue.3, pp.133-141, 2005.
DOI : 10.1016/j.eplepsyres.2005.09.008

S. Dietrich, J. Smith, C. Scherzinger, K. Hofmann-preiss, T. Freitag et al., A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI / Funktionelle Magnetresonanztomographie zeigt Aktivierungen des Hirnstamms und weiterer zerebraler Strukturen unter transkutaner Vagusnervstimulation, Biomedizinische Technik/Biomedical Engineering, vol.53, issue.3, pp.104-111, 2008.
DOI : 10.1515/BMT.2008.022

A. E. Dorr and G. Debonnel, Effect of Vagus Nerve Stimulation on Serotonergic and Noradrenergic Transmission, Journal of Pharmacology and Experimental Therapeutics, vol.318, issue.2, pp.890-898, 2006.
DOI : 10.1124/jpet.106.104166

S. L. Fairhall and A. Ishai, Effective Connectivity within the Distributed Cortical Network for Face Perception, Cerebral Cortex, vol.17, issue.10, pp.2400-2406, 2007.
DOI : 10.1093/cercor/bhl148

K. Friston, Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution, NeuroImage, vol.58, issue.2, 2009.
DOI : 10.1016/j.neuroimage.2009.09.031

K. Friston, J. Mattout, N. Trujillo-barreto, J. Ashburner, and W. Penny, Variational free energy and the Laplace approximation, NeuroImage, vol.34, issue.1, pp.220-234, 2007.
DOI : 10.1016/j.neuroimage.2006.08.035

K. J. Friston, L. Harrison, and W. Penny, Dynamic causal modelling, NeuroImage, vol.19, issue.4, pp.1273-1302, 2003.
DOI : 10.1016/S1053-8119(03)00202-7

URL : https://hal.archives-ouvertes.fr/inserm-00388972

K. J. Friston, A. P. Holmes, and K. J. Worsley, How Many Subjects Constitute a Study?, NeuroImage, vol.10, issue.1, pp.1-5, 1999.
DOI : 10.1006/nimg.1999.0439

K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics, NeuroImage, vol.12, issue.4, pp.466-477, 2000.
DOI : 10.1006/nimg.2000.0630

K. J. Friston, K. E. Stephan, T. E. Lund, A. Morcom, and S. Kiebel, Mixed-effects and fMRI studies, NeuroImage, vol.24, issue.1, pp.244-252, 2005.
DOI : 10.1016/j.neuroimage.2004.08.055

M. I. Garrido, J. M. Kilner, S. J. Kiebel, K. E. Stephan, and K. J. Friston, Dynamic causal modelling of evoked potentials: A reproducibility study, NeuroImage, vol.36, issue.3, pp.571-580, 2007.
DOI : 10.1016/j.neuroimage.2007.03.014

M. A. Gray, L. Minati, N. A. Harrison, P. J. Gianaros, V. Napadow et al., Physiological recordings: Basic concepts and implementation during functional magnetic resonance imaging, NeuroImage, vol.47, issue.3, pp.1105-1115, 2009.
DOI : 10.1016/j.neuroimage.2009.05.033

D. A. Groves, E. M. Bowman, and V. J. Brown, Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat, Neuroscience Letters, vol.379, issue.3, pp.174-179, 2005.
DOI : 10.1016/j.neulet.2004.12.055

. Reyt, Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation, NeuroImage, vol.52, issue.4
DOI : 10.1016/j.neuroimage.2010.05.021

URL : https://hal.archives-ouvertes.fr/inserm-00498678

S. Guo, A. K. Seth, K. M. Kendrick, C. Zhou, and J. Feng, Partial Granger causality???Eliminating exogenous inputs and latent variables, Journal of Neuroscience Methods, vol.172, issue.1, pp.79-93, 2008.
DOI : 10.1016/j.jneumeth.2008.04.011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.884

A. Hamberger, K. Haglid, B. Nystrom, and H. Silfvenius, Co-variation of free amino acids in human epileptogenic cortex, Neurochemical Research, vol.161, issue.4, pp.519-525, 1993.
DOI : 10.1007/BF00967256

S. E. Krahl, K. B. Clark, D. C. Smith, and R. A. Browning, Locus Coeruleus Lesions Suppress the Seizure-Attenuating Effects of Vagus Nerve Stimulation, Epilepsia, vol.169, issue.7, pp.709-714, 1998.
DOI : 10.1016/0920-1211(95)00035-9

W. C. Liu, K. Mosier, A. J. Kalnin, and D. Marks, BOLD fMRI activation induced by vagus nerve stimulation in seizure patients, Journal of Neurology, Neurosurgery & Psychiatry, vol.74, issue.6, pp.811-813, 2003.
DOI : 10.1136/jnnp.74.6.811

M. Lomarev, S. Denslow, Z. Nahas, J. H. Chae, M. S. George et al., Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects, Journal of Psychiatric Research, vol.36, issue.4, pp.219-227, 2002.
DOI : 10.1016/S0022-3956(02)00013-4

L. B. Marangell, M. Martinez, R. A. Jurdi, and H. Zboyan, Neurostimulation therapies in depression: a review of new modalities, Acta Psychiatrica Scandinavica, vol.63, issue.3, pp.174-181, 2007.
DOI : 10.1159/000093213

G. Zanetti, A. Tuveri, and G. Biggio, Increase in 20-50 Hz (gamma frequencies) power spectrum and synchronization after chronic vagal nerve stimulation, Clin Neurophysiol, vol.116, pp.2026-2036, 2005.

A. Mechelli, J. T. Crinion, S. Long, K. J. Friston, L. Ralph et al., Dissociating Reading Processes on the Basis of Neuronal Interactions, Journal of Cognitive Neuroscience, vol.7, issue.11, pp.1753-1765, 2005.
DOI : 10.1126/science.1589767

A. H. Milby, C. H. Halpern, and G. H. Baltuch, Vagus nerve stimulation for epilepsy and depression, Neurotherapeutics, vol.187, issue.Suppl 8, pp.75-85, 2008.
DOI : 10.1016/j.nurt.2007.10.071

R. J. Moran, K. E. Stephan, S. J. Kiebel, N. Rombach, W. T. O-'connor et al., Bayesian estimation of synaptic physiology from the spectral responses of neural masses, NeuroImage, vol.42, issue.1, pp.272-284, 2008.
DOI : 10.1016/j.neuroimage.2008.01.025

Z. Nahas, C. Teneback, J. H. Chae, Q. Mu, C. Molnar et al., Serial Vagus Nerve Stimulation Functional MRI in Treatment-Resistant Depression, Neuropsychopharmacology, vol.139, issue.8, pp.1649-1660, 2007.
DOI : 10.1038/sj.npp.1301288

J. T. Narayanan, R. Watts, N. Haddad, D. R. Labar, P. M. Li et al., Cerebral Activation during Vagus Nerve Stimulation: A Functional MR Study, Epilepsia, vol.85, issue.suppl 6, pp.1509-1514, 2002.
DOI : 10.1046/j.1528-1157.2002.16102.x

D. K. Naritoku, W. J. Terry, and R. H. Helfert, Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve, Epilepsy Research, vol.22, issue.1, pp.53-62, 1995.
DOI : 10.1016/0920-1211(95)00035-9

V. Osharina, V. Bagaev, F. Wallois, and N. Larnicol, Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: Importance of pulse frequency, Autonomic Neuroscience, vol.126, issue.127, 2006.
DOI : 10.1016/j.autneu.2006.03.011

URL : https://hal.archives-ouvertes.fr/hal-00300553

. Reyt, Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation, NeuroImage, vol.52, issue.4
DOI : 10.1016/j.neuroimage.2010.05.021

URL : https://hal.archives-ouvertes.fr/inserm-00498678

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, 1997.

W. D. Penny, K. E. Stephan, A. Mechelli, and K. J. Friston, Comparing dynamic causal models, NeuroImage, vol.22, issue.3, pp.1157-1172, 2004.
DOI : 10.1016/j.neuroimage.2004.03.026

A. Roebroeck, E. Formisano, and R. Goebel, The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution, NeuroImage, vol.58, issue.2, 2009.
DOI : 10.1016/j.neuroimage.2009.09.036

C. B. Saper, : Conscious Visceral Perception and Autonomic Pattern Generation, Annual Review of Neuroscience, vol.25, issue.1, pp.433-469, 2002.
DOI : 10.1146/annurev.neuro.25.032502.111311

C. B. Saper, Central autonomic system, The rat nervous system, 2004.

B. Schuyler, J. M. Ollinger, T. R. Oakes, T. Johnstone, and R. J. Davidson, Dynamic Causal Modeling applied to fMRI data shows high reliability, NeuroImage, vol.49, issue.1, 2009.
DOI : 10.1016/j.neuroimage.2009.07.015

P. Schweinhardt, P. Fransson, L. Olson, C. Spenger, and J. L. Andersson, A template for spatial normalisation of MR images of the rat brain, Journal of Neuroscience Methods, vol.129, issue.2, pp.105-113, 2003.
DOI : 10.1016/S0165-0270(03)00192-4

T. Siman-tov, A. Mendelsohn, T. Schonberg, G. Avidan, I. Podlipsky et al., Bihemispheric Leftward Bias in a Visuospatial Attention-Related Network, Journal of Neuroscience, vol.27, issue.42, pp.11271-11278, 2007.
DOI : 10.1523/JNEUROSCI.0599-07.2007

K. E. Stephan, W. D. Penny, J. Daunizeau, R. J. Moran, and K. J. Friston, Bayesian model selection for group studies, NeuroImage, vol.46, issue.4, pp.1004-1017, 2009.
DOI : 10.1016/j.neuroimage.2009.03.025

R. Sucholeiki, T. M. Alsaadi, G. L. Morris, J. L. Ulmer, B. Biswal et al., fMRI in patients implanted with a vagal nerve stimulator, Seizure, vol.11, issue.3, pp.157-162, 2002.
DOI : 10.1053/seiz.2001.0601

K. J. Tracey, Physiology and immunology of the cholinergic antiinflammatory pathway, Journal of Clinical Investigation, vol.117, issue.2, 2007.
DOI : 10.1172/JCI30555

K. J. Tracey, Reflex control of immunity, Nature Reviews Immunology, vol.293, issue.6, pp.418-428, 2009.
DOI : 10.1038/nri2566

E. P. Van-der-zanden, G. E. Boeckxstaens, and W. J. De-jonge, The vagus nerve as a modulator of intestinal inflammation, Neurogastroenterology & Motility, vol.34, issue.1, pp.6-17, 2009.
DOI : 10.1111/j.1365-2982.2008.01252.x

R. Weber, P. Ramos-cabrer, D. Wiedermann, C. N. Van, and M. Hoehn, A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat, NeuroImage, vol.29, issue.4, 2006.
DOI : 10.1016/j.neuroimage.2005.08.028

R. G. Wise, K. Ide, M. J. Poulin, and I. Tracey, Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal, NeuroImage, vol.21, issue.4, pp.1652-1664, 2004.
DOI : 10.1016/j.neuroimage.2003.11.025

F. Xu and D. T. Frazier, Medullary respiratory neuronal activity modulated by stimulation of the fastigial nucleus of the cerebellum, Brain Research, vol.705, issue.1-2, pp.53-64, 1995.
DOI : 10.1016/0006-8993(95)01138-2