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Abstract

All living organisms depend on dynamic mechanisms that repeatedly reassess the status of amassed energy, in order to adapt energy

supply to demand. The AMP-activated protein kinase (AMPK)  heterotrimer has emerged as an important integrator of signalsαβγ
managing energy balance. Control of AMPK activity involves allosteric AMP and ATP regulation, auto-inhibitory features and

phosphorylation of its catalytic ( ) and regulatory (  and ) subunits. AMPK has a prominent role not only as a peripheral sensor butα β γ
also in the central nervous system as a multifunctional metabolic regulator. AMPK represents an ideal second messenger for

reporting cellular energy state. For this reason, activated AMPK acts as a protective response to energy stress in numerous systems.

However, AMPK inhibition also actively participates in the control of whole body energy homeostasis. In this review, we discuss

recent findings that support the role and function of AMPK inhibition under physiological and pathological states.
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Introduction

The survival of all organisms depends on the dynamic control of energy metabolism during acute or prolonged shortage of nutrient

supply. Over the past years, the 5 -adenosine monophosphate-activated protein kinase (AMPK) has emerged as an important regulator of′
cellular energy homeostasis that coordinates metabolic pathways in order to balance nutrient supply with energy demand in mammalian

cells. AMPK is a homolog of Snf1 kinase, a metabolic stress sensing kinase that is critical for yeast survivalSaccharomyces cerevisiae 

under conditions of glucose starvation ( ). AMPK is an energy-sensing protein complex, activated in response to anWoods , 1994 et al. 

increase in the AMP:ATP ratio during hypoxia, starvation, glucose deprivation or muscle contraction ( ). AMPKKahn , 2005 et al. 

integrates nutritional and hormonal signals to maintain cellular energy balance and execute appropriate metabolic functions (e.g.,

regulation of fatty acids partitioning between oxidative and biosynthetic pathways) in response to nutritional and environmental variations

( ). One mechanism by which AMPK regulates lipid metabolism is phosphorylation and inactivation of acetyl CoAViollet , 2009 et al. 

carboxylase (ACC), an important rate-controlling enzyme for the synthesis of malonyl-CoA. ACC is both a critical precursor for

biosynthesis of fatty acids and a potent inhibitor of long-chain fatty acyl-CoA transport to mitochondria for -oxidation.β
Knockdown/knockout of ACC1 and ACC2 (predominantly expressed in liver and skeletal muscle, respectively), has been reported to

cause continuous fatty acid oxidation, increased energy expenditure and reduced fat mass ( ; ; Abu-Elheiga , 2001 et al. Choi , 2007 et al. 

). But recent studies have reported limited effects of ACC2 deletion on fatty acid oxidation in skeletal muscle andSavage , 2006 et al. 

overall energy expenditure or adiposity ( ; ). These recent reports indicate that increased fatty acidHoehn , 2010 et al. Olson , 2010 et al. 

oxidation in skeletal muscle does not cause leanness and raises questions regarding the use of ACC2 inhibitors in the treatment of obesity.

However, the use of a small molecule direct AMPK activator A-769662 was shown to have beneficial effects on both hepatic steatosis and

insulin resistance, thus emphasizing the potential therapeutic implications for AMPK activation in type 2 diabetes ( ).Cool , 2006 et al. 

Regardless, AMPK activation results in inhibition of energy-consuming biosynthetic pathways (such as fatty acid synthesis and

adipocytes, cholesterol synthesis in the liver and insulin secretion from -cell) and activation of ATP-producing catabolic pathways (suchβ
as fatty acid uptake and oxidation in multiple tissues, glycolysis in heart and mitochondrial biogenesis in muscle). AMPK also modulates

transcription of specific genes involved in energy metabolism, thereby exerting long-term metabolic control ( ). It isViollet , 2006 et al. 

also implicated in the central regulation of food intake and energy expenditure in response to hormonal cues including leptin, ghrelin and

adiponectin. Thus, AMPK not only governs cellular energy, but regulates overall organismal bio-energetics by coordinating the response

in and in-between tissues according to nutritional input. Its position at crossroads of energy metabolism makes AMPK an attractive

therapeutic target in metabolic diseases, with its pharmaceutical potential in situations of insulin resistance already confirmed. It has

therefore emerged as a promising new drug target for the treatment of metabolic disorders including obesity, Type 2 diabetes and

cardiovascular disease.
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Due to its role in maintaining energy balance, a dysfunction in AMPK signaling pathway may result in perturbations at the systemic

level that contribute to development of metabolic disorders. In support, there is a strong correlation between low AMPK activation state,

mainly due to over-nutrition and lack of exercise, and metabolic disorders associated with insulin resistance, obesity and sedentary lifestyle

( ). Furthermore, decreased AMPK activation is implicated in human metabolic disorders associated withRuderman and Prentki, 2004 

increased cancer risk. Numerous studies show links between AMPK and cancer, both at the organism and molecular levels. Although the

contribution of AMPK to the etiology of these disorders is unclear, pharmacologic AMPK activators are effective in their treatment.

Interestingly, recent evidences indicate that AMPK participates in the regulation of non-metabolic processes such as cell growth, cell cycle

progression and organization of the cytoskeleton ( ). Since, all these are highly energy-consuming processes,Williams and Brenman, 2008 

AMPK s involvement is certain, due to its ability to directly sense and regulate cellular energy homeostasis. AMPK signaling pathway’
serves as a metabolic checkpoint in the cell, arresting cell growth in low energy status, such as low nutrient conditions (Jones , 2005 et al. 

). Moreover, recent studies in lower eukaryote demonstrated that AMPK is involved in the regulation of epithelial cell polarity and mitotic

cell division ( ).Lee , 2007a et al. 

Although AMPK activation is an adaptive response to energy stress in numerous systems, AMPK plays a role in both physiological

and pathophysiological states. Here, we review our understanding of AMPK inhibition in response to cellular and organismal energy

challenges and describe the beneficial as well as adverse consequences of global AMPK modulation.

Structure and regulation of AMPK
Structure and subunit composition

AMPK exists in the cell as a heterotrimeric complex with one catalytic ( , 63 kDa) and two regulatory subunits ( , 30kDa, and , 38α β γ –
63 kDa) in a 1 :1 :1  ratio ( ). The  subunit contains a conventional serine/threonine kinase domain at the N-terminus followedα β γ Figure 1 α
by an auto-inhibitory domain, and a C-terminus containing the domains required for binding of  and  subunits ( ). The β γ Crute , 1998 et al. 

 subunit contains two characterized elements, a central domain ensuring the binding of AMPK complexes to glycogen (β Hudson ,et al. 

; ) and a C-terminal region acting as a tethering domain for  and  subunits ( ; 2003 Polekhina , 2003 et al. α γ Iseli , 2005 et al. Townley and

). The  subunit contains a variable N-terminal region followed by four highly conserved cystathionine- -synthase (CBS)Shapiro, 2007 γ β
sequence repeats (small motifs found in tandem pairs termed Bateman domains ( )), capable of binding adenine nucleotides,Bateman, 1997 

such as AMP or ATP ( ; ; ). Further isoforms have been identified for eachScott , 2004 et al. Townley and Shapiro, 2007 Xiao , 2007 et al. 

of the three AMPK subunits ( 1, 2, 1, 2, 1, 2, 3 with splice variants for the 2 and 3 isoforms adding to the diversity), encoded byα α β β γ γ γ γ γ
distinct genes and theoretically leading to formation of at least 12 different complexes. These combinations confer different properties to

the AMPK complexes through differences in subcellular localization and signaling functions ( ; ).Cheung , 2000 et al. Salt , 1998a et al. 

Thus, the tissue-specific subunit composition may be important to determine a specialized cellular and systemic response to different

metabolic stresses. Recent investigation of isoform composition of AMPK complexes in human skeletal muscle found that only 3 of the 12

potential AMPK complexes were present ( 2 2 1 2 2 3 1 2 1) and were activated differently, depending on exercise intensity andα β γ ≫α β γ =α β γ
duration ( ). AMPK 1 catalytic subunit expression is relatively distributed across adipose tissue, pancreas,Birk and Wojtaszewski, 2006 α
lung, spleen and kidney. Skeletal and cardiac muscles predominantly express AMPK 2 catalytic subunit. While the 1 subunit isα β
ubiquitously expressed, AMPK 2 subunit is abundantly expressed in skeletal muscle and heart. Interestingly, expression of the 3 subunitβ γ
appears highly specific to glycolytic skeletal muscle whereas 1 and 2 show broad tissue distribution ( ).γ γ Cheung , 2000 et al. 

Allosteric regulation by AMP and ATP

AMPK is allosterically activated by AMP, which binds to the regulatory  subunit, resulting in a 2 to 5 fold increase in activityγ
compared to basal activity ( ). The degree of activation by AMP is markedly affected by nature of the catalytic  andHardie , 1999 et al. α
regulatory  iso-forms constituting the AMPK complex, illustrating the complexity of AMPK signaling regulation. The greatest scale ofγ
activation is observed in AMPK complexes containing the 2 and 2 subunits, while complexes containing the 3 isoform are only weaklyα γ γ
activated by AMP ( ). Binding of AMP to the  subunit causes direct allosteric activation of the kinase and alsoCheung , 2000 et al. γ
induces a conformational change in the kinase domain that protects AMPK from dephosphorylation of Thr-172 ( ; Riek , 2008 et al. 

; ), favoring accumulation of the phosphorylated active form of AMPK (see below). Interestingly, itSanders , 2007 et al. Suter , 2006 et al. 

has been demonstrated that high concentrations of ATP oppose activation of the AMPK complex by AMP, suggesting that the allosteric

sites bind AMP and ATP in a mutually exclusive manner ( ). Thus, AMPK can be considered more as a sensor of theCorton , 1995 et al. 

intracellular AMP/ATP ratio, rather than a direct sensor of AMP levels. AMP and ATP vary reciprocally in cells, due to the action of

adenylate kinase (AMP  ATP <-> 2ADP adenosine 5 -diphosphate ), thus, AMP: ATP ratio may be a more sensitive indicator of cellular+ [ ′ ]
energy status than ADP: ATP ratio. The finding that AMPK activation is altered in contracting muscles from adenylate kinase-deficient

mice also supports a role for adenylate kinase in generation of an AMPK activating signal ( ).Hancock , 2006 et al. 

The crystal structures of mammalian  and yeast homologue revealed the structural and conformational elements required for bindingγ
the regulatory nucleotides AMP and ATP ( ; ). Out of all the CBS domains present, two CBSTownley and Shapiro, 2007 Xiao , 2007 et al. 

domains appear to bind AMP or ATP reversibly and may correspond to the two regulatory sites identified from previous binding studies (
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). A third CBS domain binds AMP very strongly and does not readily exchange with ATP, but its physiological role isScott , 2004 et al. 

unclear. The fourth CBS domain remains unoccupied even in the presence of high concentrations of AMP or ATP ( ).Xiao , 2007 et al. 

Several naturally occurring point mutations in the CBS domains of human 2 isoform have been reported to cause an inherited syndromeγ
of hypertrophic cardiomyopathy of varying severity associated with excessive glycogen storage in cardio myocytes, accompanied with

Wolff Parkinson White syndrome, a pre-excitation disorder ( ). Biochemical studies demonstrate that some of these– – Arad , 2007 et al. 

mutations interfere with the binding of AMP and allosteric activation ( ) of AMPK. This supports the evidence thatScott , 2004 et al. 

Bateman domains (CBS domains) constitute the regulatory binding sites for AMP. Interestingly, although mutations in the 2 subunitγ
reduces binding of the activating nucleotide AMP, they also appear to increase the basal activity associated with elevated Thr-172

phosphorylation ( ; ). This is presumably due to a concomitant reduction in binding of theArad , 2002 et al. Burwinkel , 2005 et al. 

inhibitory nucleotide ATP and consequent reduction in phosphatase activity, thus hindering kinase inactivation (see below). Therefore, 2γ
mutants, unoccupied by ATP, behave in a partially active conformation and this gain-of-function  effect could explain the dominant“ ”
nature of  subunit mutations ( ; ). Hence, AMPK dysregulation could be connected withγ Burwinkel , 2005 et al. Hamilton , 2001 et al. 

impaired binding or interaction of both AMP and ATP on the  subunit.γ

AMPK is also allosterically inhibited by physiological concentrations of phosphocreatine ( ), consistent with thePonticos , 1998 et al. 

proposed physiological role of the kinase as a sensor of cellular energy status. As it decreases during muscle contraction, phosphocreatine,

rather than AMP, may be the key regulator of the AMPK system during short-term exercise.

Autoregulation of AMPK complexes

AMPK, like other protein kinases, autoregulates its own activity through structural elements, that directly block its catalytic site.

Within the catalytic  subunit, a region that is C-terminal to the kinase domain appears to act as an auto-inhibitory domain (AID) byα
interfering with kinase substrate binding and catalytic function ( ). Detailed mutagenesis studies provide evidence that aCrute , 1998 et al. 

conserved short segment of the  subunit 1-(313 335) , forming an  helix, binds to the kinase domain in an inactive conformation and isα [α – ] α
responsible for auto-inhibition ( ). Furthermore, three-dimensional structural studies revealed that hydrophobic contactsPang , 2007 et al. 

between the kinase domain and the AID have a predominant role in the allosteric control by AMP ( ). Upon binding ofChen , 2009a et al. 

AMP, conformational change between low and high activity forms of AMPK alters the interaction between AID and kinase domains and

eventually removes the effect of AID on kinase activation and also Thr172 dephosphorylation ( ). This mechanism ofChen , 2009a et al. 

AMPK inhibition highlights the potential to develop small compounds that activate AMPK by antagonizing the auto-inhibitory role of

AID ( ). In addition to the AID, it has been suggested that AMPK is also inhibited by an internal auto-inhibitory sequencePang , 2008 et al. 

similar to the consensus recognition motif for AMPK substrates but lacking a phosphoryl-able amino acid. Scott and coworkers proposed

that, in the absence of AMP, a pseudo-substrate sequence, within the 2 CBS2 sub-domain, binds to the catalytic groove of AMPK ,γ α
preventing phosphorylation by the upstream kinase and therefore, access to downstream targets ( ). When AMP binds toScott , 2007 et al. 

the  subunit, a conformational change prevents the interaction of the pseudo-substrate sequence with the kinase domain and thus, causesγ
activation of AMPK.

Regulation by phosphorylation/dephosphorylation

In addition to allosteric activation, AMPK is regulated by reversible phosphorylation ( ). The key step in AMPK activation isFigure 2 

its phosphorylation on threonine residue 172 (Thr-172), within the catalytic domain, by upstream kinases. The combination of the

allosteric and phosphorylation effects causes >1000-fold increase in kinase activity (compared to up-to fivefold for allosteric activation

alone), allowing high sensitivity in responses to small changes in cellular energy status ( ). Three AMPK upstreamSuter , 2006 et al. 

kinases (AMPKKs) have been identified to date. The primary AMPKK is a complex between the tumor suppressor, LKB1, and two

accessory subunits, STRAD and MO25 ( ; ). LKB1 also functions upstream of 12 other kinasesHawley , 2003 et al. Woods , 2003a et al. 

(AMPK-related kinases) situated on the same family as AMPK by phylogenetic analysis of kinase domain sequences (Lizcano , 2004et al. 

). The LKB1 protein kinase activity appears to be constitutively active and is not regulated by AMP ( ; Lizcano , 2004 et al. Sakamoto et al.

). This view was recently challenged with recent studies showing that the subcellular localization of LKB1 and consequently, its, 2004 

activity may be modifiable. It has been suggested that SIRT1, one of the seven mammalian NAD( )-dependent deacetylases silent mating+
type information regulator 2 ortholog (sirtuin) genes ( ), promotes LKB1-dependent AMPK stimulation through directHowitz , 2003 et al. 

deacetylation and increased cytoplasmic/nuclear ratio of LKB1 ( ). Also, recently it was shown that Fyn kinaseLan , 2008 et al. 

phosphorylation of LKB1 on Tyr265 and Tyr365 residues results in cytoplasmic distribution of LKB1 and increased AMPK

phosphorylation ( ). Binding of AMP to AMPK promotes LKB1-dependent phosphorylation of Thr-172 throughYamada , 2010 et al. 

inhibition of dephosphorylation (by making AMPK complex a less efficient substrate for protein phosphatases) and produces a large effect

on kinase activity by allosterically activating the phosphorylated form of AMPK. In addition, Ca2 /calmodulin-dependent protein kinase+
kinase  (CaMKK ) has also been identified as a separate AMPK kinase ( ; ; ),β β Hawley , 2005 et al. Hurley , 2005 et al. Woods , 2005 et al. 

that phosphorylates and activates AMPK in response to elevated intracellular Ca2  concentrations, independent of any change in cellular+
AMP/ATP ratio. TGF- -activated kinase 1 (TAK1) has also been recently implicated in the regulation of AMPK activity, although theβ
physiological conditions during which TAK1 regulates AMPK are unclear ( ; ).Momcilovic , 2006 et al. Xie , 2006 et al. 
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While -Thr-172 is the major AMPK phosphorylation and activation site,  and  subunits are phosphorylated at multiple sites (α α β
; ; ), however, the physiological relevance of these sites remain unclear.Mitchelhill , 1997 et al. Villen , 2007 et al. Woods , 2003b et al. 

Recent studies provide evidence that direct phosphorylation of AMPK 1/ 2 at Ser485/491 antagonizes its activation and correlates withα α
inhibition of AMPK activity during insulin signaling in the heart ( ) and cAMP-mediated signaling in anHorman , 2006 et al. 

insulin-secreting cell line ( ). A hierarchical control by insulin was proposed for the reduction of AMPK activation inHurley , 2006 et al. 

ischemic heart PKB-induced phosphorylation of Ser485/491 (see below). The inhibitory effect of cAMP was linked to reduction invia 

phosphorylation of AMPK at Thr172 and appears to be due, in part, to cAMP-dependent inhibition of the upstream AMPK kinase

CaMKK, but not LKB1 ( ). On the other hand, cAMPdependent attenuation of AMPK activity has also been correlatedHurley , 2006 et al. 

with increased phosphorylation of AMPK 1 Ser485/491 by PKA ( ). This is in contrast to studies in adipocytes,α Hurley , 2006 et al. 

showing that agents stimulating PKA-mediated cAMP signaling (isoproterenol, isobutylmethylxanthine, forskolin, -adrenergic agonistβ
and adrenaline) result in increased AMPK activity ( ; ; ; ; Daval , 2005 et al. Koh , 2007 et al. Moule and Denton, 1998 Omar , 2009 et al. 

). Since, cAMP-stimulated lipolysis in adipocytes was accompanied by an increase in oxidative stress (i.e., an increaseYin , 2003 et al. 

AMP:ATP ratio), AMPK activation could be a consequence of lipolysis and the associated relative change in cellular energy balance rather

than a direct effect of PKA ( ). Similarly, it has been shown that IL-6 activates AMPK in skeletal muscle byGauthier , 2008 et al. 

increasing the concentration of cAMP and, secondarily, the AMP:ATP ratio ( ). However, potential crosstalk betweenKelly , 2009 et al. 

PKA and AMPK signaling pathways underlying negative action of PKA on AMPK signaling has been recently reported in context of

adipocytes. Central to this mechanism is the phosphorylation of AMPK 1 by PKA at Ser173 ( ). This site is highlyα Djouder , 2010 et al. 

conserved, located directly adjacent to the critical activation loop Thr172 and its phosphorylation may create constraints by steric

hindrance or charge incompatible with subsequent phosphorylation at the Thr172 residue. This mechanism is critically important for the

control of the lipolytic response. Stimulation of adipocyte lipolysis, PKA activation, triggers a negative feedback mechanism involvingvia 

AMPK to restrain the energy depletion and oxidative stress caused by lipolysis ( ). By opposing the activity ofGauthier , 2008 et al. 

AMPK-mediated negative feedback loop, PKA allows fine-tuning of lipolysis ( ).Djouder , 2010 et al. 

Protein phosphatases have an important role in regulating AMPK phosphorylation at Thr-172 and consequently AMPK activity,

although the exact mechanisms that modulate their action remains poorly understood. Their ability to dephosphorylate Thr172 on AMPK

is inhibited by AMP binding to the  subunit ( ; ). Both protein phosphatases 2A (PP2A) and 2Cγ Davies , 1995 et al. Sanders , 2007 et al. 

were shown to dephosphorylate AMPK ( ; ). Recent findings revealed the important role ofin vitro Davies , 1995 et al. Kudo , 1996 et al. 

PPs activation in the suppression of AMPK activity by dephosphorylation in different species, organs, and nutrition types (Ravnskjaer et

; ; ). In support with these results, it has been reported that PP2A is involved in, 2006 al. Wang and Unger, 2005 Wu , 2007 et al. 

regulating the interaction between AMPK 2 and 1 ( ).α γ Gimeno-Alcaniz and Sanz, 2003 

Regulation by subcellular localization

Intracellular distribution of AMPK complexes appears to shuttle between the nucleus and the cytoplasm in response to specific stimuli.

In Hela cells, AMPK translocated to the nucleus upon stimulation by agents inducing cellular stress ( ). In humanKodiha , 2007 et al. 

skeletal muscle, the AMPK 2 subunit translocated to the nucleus following intense exercise ( ). Interestingly, the twoα McGee , 2003 et al. 

AMPK  subunits, 1 and 2, have been shown to have different localization patterns in mammalian cells, with the 1 subunit beingα α α α
localized to the non-nuclear fraction and the 2 subunit localized to both the nucleus and the non-nuclear fractions. AMPK 1 is henceα α
likely to phosphorylate cytosolic and plasma membrane substrates, whereas AMPK 2 may be primarily involved in the conversion ofα
metabolic signals into transcriptional regulation ( ). Another mechanism to localize signaling events is the associationSalt , 1998a et al. 

with scaffold proteins. The  subunits act as targeting scaffolds, influencing subcellular localization through an N-terminal myristoylationβ
site ( ) that can target AMPK to membrane ( ; ). AMPK 2 bound to AMPKMitchelhill , 1997 et al. Gregor , 2006 et al. Warden , 2001 et al. α
1 is anchored in the cytoplasm at the outer mitochondrial membrane through the myristoylation site of 1 subunit. In contrast, AMPK 2β β α

bound to AMPK 2 translocates to the nucleus in a manner driven by a nuclear localization signal present in AMPK 2 but not in AMPK 1β α α
subunit ( ). The 1 subunit also exhibits preferential nuclear localization over the other  subunits (Suzuki , 2007 et al. γ γ Turnley , 1999 et al. 

). These data suggest that activation of AMPK complexes may elicit distinct metabolic as well as signaling effects in tissues and cells

depending on the expression of different catalytic and regulatory subunits.

Regulation of protein stability

Recent data revealed a new mechanism that regulates AMPK activity independently of AMP and of phosphorylation or

dephosphorylation processes. Modulation of AMPK complex stability ubiquitination-mediating degradation has emerged through avia 

complex containing cell death-inducing DNA fragmentation factor -like effector A (Cidea) and AMPK ( ). Cidea andα Qi , 2008 et al. 

AMPK have been shown to co-localize in the endoplasmic reticulum and form a complex through specific interaction with thein vivo 

AMPK  subunit to promote ubiquitin-mediated AMPK degradation and down-regulation of its activity. Truncated AMPK  proteinsβ β
lacking the region required for its interaction with Cidea no longer undergo Cidea-mediated protein degradation ( ).Qi , 2008 et al. 

AMPK inhibition in physiology
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Regulation by nutrient

Inhibition by lipid overload

An increasing body of evidence indicates that dysregulation of AMPK activity and its consequential signaling network may have

sustained and deleterious effects at the systemic level that underlie the pathogenesis of metabolic syndrome (Ruderman and Prentki, 2004 

). A strong correlation between low activation state of AMPK and metabolic disorders associated with insulin resistance, obesity and

sedentary activities has been established in a variety of rodent models with aspects of the metabolic syndrome ( ; Kelly , 2004 et al. Yu et

). In addition, feeding mice with a high fat diet causes dysregulation of AMPK, associated with impaired AMPK, 2004 al. 

phosphorylation and protein expression in skeletal muscle, heart, liver, aortic endothelium and hypothalamus ( ; Lee , 2005 et al. Lessard et

; ; ; ; ; ). Furthermore,, 2006 al. Liu , 2006 et al. Martin , 2006 et al. Muse , 2004 et al. Wang and Unger, 2005 Wilkes , 2005 et al. 

inhibition of AMPK was found to occur in mice fed with a high fat diet rich in palmitate ( ), raising the possibility thatWu , 2007 et al. 

chronic exposure to fatty acids inhibits AMPK activation in a feed-forward effect of lipid overload. It was reported that palmitate inhibited

AMPK in endothelial cells ceramide-dependent PP2A activation ( ). Interestingly, AMPK inhibition by PP2Cvia Wu , 2007 et al. 

upregulation was accounted for decreased AMPK activity in the heart of obese rodents with cardiac lipotoxicity ( ).Wang and Unger, 2005 

These data provide new insights into the mechanisms of lipo-regulatory dysfunction, leading to lipid metabolism disorders in obesity.

If decreased AMPK activity contributes to the pathogenesis of obesity, as suggested by dysregulation of AMPK signaling in obese

rodent models, one would expect that mice lacking AMPK will be more sensitive to deleterious effects of over-nutrition. Consistent with

this hypothesis, whole-body ablation of AMPK 2 activity exacerbates high fat diet-induced obesity, while the glucose disposal rates areα
similar to those of wild-type mice ( ). The fact that these mice have similar triglycerides contents in liver and muscle,Villena , 2004 et al. 

either on high-fat or normal diets, rules out the lipid accumulation in these tissues as a major determinant of their glucose homeostasis (

). More recently, Jorgensen and coworkers investigated whether reduced levels of muscle AMPK promoted lipidVillena , 2004 et al. 

accumulation and insulin resistance during high-fat diet ( ). High-fat feeding increased body mass andBeck Jorgensen , 2009 et al. 

adiposity, and impaired insulin and glucose tolerance, however, there was no difference between wild-type and transgenic litter-mates

overexpressing an AMPK 2 kinase-dead (KD) in muscle. High-fat feeding decreased insulin-stimulated muscle glucose uptake andα
Akt-phosphorylation, while increasing muscle triacylglycerol, diacylglycerol and ceramide. These effects, as well as obesity-induced lipid

accumulation and insulin resistance were not exacerbated in AMPK KD mice, suggesting that reduced levels of muscle AMPK 2 did notα
promote insulin resistance in the early phase of obesity-related diabetes. Another study by Fujii and coworkers demonstrated that mice

overexpressing a muscle-specific KD AMPK 2 Asp157Ala mutation developed more severe muscle insulin resistance after 30 weeks onα
high-fat diet ( ). However, the observation that the genotype effect occurred 26 weeks late than the first evidence ofFujii , 2008 et al. 

glucose intolerance suggested that AMPK did not play a primary role in the development of insulin resistance. Thus, while AMPK

function is impaired with severe obesity, it does not appear to influence the development of insulin resistance in diet-induced obesity.

Inhibition by high glucose concentration

AMPK can be negatively regulated by chronic exposure to high glucose. Acute hyperglycemia reduces AMPK activation in muscle,

liver ( ) and kidney ( ). Decreased AMPK activity observed after glucose infusion does not dependKraegen , 2006 et al. Lee , 2007b et al. 

on changes in plasma insulin and FFA levels, as alterations in AMPK activity are also observed following incubation with high glucose

concentrations in isolated muscles ( ) as well as in cultured HepG2 hepatocytes ( ), human umbilicalItani , 2003 et al. Zang , 2004 et al. 

vein endothelial cells ( ), -cells ( ; ; ) and islets (Ido , 2002 et al. β da Silva Xavier , 2003 et al. Gleason , 2007 et al. Salt , 1998b et al. 

). Upon elevation of glucose concentration over the physiological range, AMPK activity is rapidly down-regulated,Leclerc , 2004 et al. 

concomitant with decrease of phosphorylation at Thr172. According to the classic view, glucose-dependent regulation of AMPK activity

and phosphorylation is presumably induced by the activation of ATP synthesis and consequent changes in AMP/ATP ratio (da Silva

; ; ). However, no change in creatine phosphate or adenine nucleotidesXavier , 2000 et al. da Silva Xavier , 2003 et al. Salt , 1998b et al. 

was reported in muscle incubated with a high concentration of glucose ( ), indicating that novel regulation mechanisms ofItani , 2003 et al. 

AMPK may be operative in response to glucose oversupply. Under circumstances, where no significant change in high-energy phosphate

molecules was observed, diminished AMPK activity and phosphorylation were attributed to alterations in phosphorylation and inhibition

of AMPK by Akt ( ; ), action of specific phosphatases on phosphorylated AMPK (Hahn-Windgassen , 2005 et al. Lee , 2007b et al. 

), changes in redox state ( ), modification in intracellular free Ca concentration (Ravnskjaer , 2006 et al. Rafaeloff-Phail , 2004 et al. 2  +

) and alterations in glycogen content ( ). Regulation of AMPK by glucose might beLeclerc and Rutter, 2004 Jorgensen , 2004 et al. 

important to limit glucose uptake into tissues and to protect cells against the adverse effects of sustained hyperglycemia, such as oxidative

stress.

Recent work in animal models demonstrated that glucose and fasting/refeeding change AMPK activity in several hypothalamic nuclei

( ; ). These studies described reduced AMPK activity and phosphorylation state in theKim , 2004b et al. Minokoshi , 2004 et al. 

basomedial hypothalamus in response to intracerebroventricular ( ) injection of glucose and showed reciprocal effects of AMPKicv 

activation or inhibition on feeding behaviour ( ; ). Hypothalamic neurons appear to mediate theKim , 2004b et al. Minokoshi , 2004 et al. 

effects of glucose changes in AMPK activity ( ). It was established that AMPK responds to changes in bloodvia Mountjoy , 2007 et al. 
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glucose and functions in transmitting the malonyl-CoA signal ( ). AMPK activation allows theWolfgang , 2007 et al. 

dephoshorylation/activation of acetyl-CoA carboxylase (ACC) which increases the level of hypothalamic malonyl-CoA resulting in food

intake suppression and increased energy expenditure. Interestingly, AMPK has been shown to play an important role in the

glucose-sensing mechanism used by the ventromedial hypothalamus, a key brain region involved in the detection of hypoglycemia (Fan et

). These findings indicate that minute changes in neuron glucose concentration modulate AMP/ATP ratio which can be sensed, 2009 al. 

by AMPK signaling pathway in discrete hypothalamic regions to generate hunger or satiety signals (see below).

Inhibition by glycogen accumulation

In skeletal muscle, some studies found that high glycogen content repressed AMPK activation ( ; Derave , 2000 et al. Wojtaszewski et

), suggesting that AMPK system may monitor availability of this energy store by virtue of the glycogen-binding domain on its , 2002 al. β
subunit ( ). The degree of AMPK activation was immense during the glycogen-depleted state in both rat and humanMcBride , 2009 et al. 

muscles ( ; ). However, this inverse correlation was not evident under all circumstances. In aViollet , 2003 et al. Wojtaszewski , 2002 et al. 

human training study, AMPK activity was not found to be directly correlated with muscle glycogen content ( ).McConell , 2008 et al. 

Furthermore, in patients with McArdle s disease (glycogen storage disease V), the activation of AMPK in response to moderate exercise’
was exaggerated despite high skeletal muscle glycogen levels ( ). Other paradoxes exist as AMPK can inactivateNielsen , 2002 et al. 

glycogen synthase (GS) by phosphorylation on Ser7 (site 2) ( ). Although AMPK is activated by exercise, glycogenJorgensen , 2004 et al. 

synthase was contradictly found dephosphorylated as well as activated after exercise. McBride and coworkers proposed a single hypothesis

to explain the physiological role of glycogen binding to AMPK complex based on its structure ( ). GlycogenMcBride , 2009 et al. 

preparations with high branching content was found to cause allosteric inhibition of AMPK, due to its binding to the glycogen-binding

domain ( ). It was demonstrated that oligosaccharides with single 1 6 branch points, but not 1 4, are potentMcBride , 2009 et al. α – α –
allosteric inhibitors of AMPK that also inhibit phosphorylation and activation by upstream kinases. AMPK bound to fully synthesized

glycogen particle is probably in an active state due to inaccessibility of internal branch points. This will lead to phosphorylation and

inhibition of GS, providing feedback inhibition of further extension of glycogen particles. However, when glycogen is depleted, AMPK

becomes inhibited after binding to exposed 1 6 branch points. This allows dephosphorylation of GS on site 2, promoting rapidα –
resynthesis of glycogen. This model implies that different pools of AMPK (glycogen-bound glycogen-free) can phosphorylate someversus 

targets while not others ( ).Jorgensen , 2004 et al. 

Inhibition by amino acids

Several reports have suggested a possible interplay between the mammalian target of rapamycin (mTOR) and AMPK signaling

pathways coordinating amino acids- and energy-sensing. The mTOR pathway has recently emerged as a crucial point of convergence for

signaling by amino acids, growth factors and cellular energy ( ). Whereas mTOR was presumed to be a directWullschleger , 2006 et al. 

cellular sensor for ATP levels, mounting evidence implicated AMPK in the regulation of mTOR activity. AMPK inhibits mTOR through

direct phosphorylation of TSC2 tumor suppressor ( ) as well as critical mTOR-binding subunit raptor (Inoki , 2003 et al. Gwinn , 2008et al. 

). Thus, mTOR activation and AMPK activity are inversely related ( ). Recent studies demonstrated that AMPKAguilar , 2007 et al. 

activity is suppressed by amino acids ( ; ). Treatment of C2C12 myoblast cells with leucineGleason , 2007 et al. Leclerc and Rutter, 2004 

enhanced the phosphorylation of mTOR and concomitantly reduced the phosphorylation of AMPK and inhibited its activity (Du ,et al. 

). The ability of leucine to dramatically reduce AMPK activity is linked to a consequent drop in the level of AMP and a subsequent2007 

decrease in AMP/ATP ratio. In the liver, the increase of protein intake induces metabolic adaptation characterized by concomitant increase

of mTOR phosphorylation and decrease of AMPK phosphorylation ( ). Similarly, high protein diet decreasesChotechuang , 2009 et al. 

AMPK and increases mTOR activity in the hypothalamus, leading to reduction in food intake ( ). Consistent with aRopelle , 2008 et al. 

cross-regulation between AMPK and mTOR to control food intake, hypothalamic ATP levels are increased and AMP/ATP ratio reduced

after high protein feeding.

Regulation by hormones and cytokines

Inhibition by insulin in the heart

The energy necessary to maintain the myocardial contraction/relaxation cycle is derived from the mitochondrial oxidation of

carbohydrates and long chain fatty acids. Under physiological conditions, fatty acid oxidation provides 60 70  of the heart energy– %
requirements ( ). This substrate preference can be attributed to inhibition of glucose uptake and catabolism theBertrand , 2008 et al. via 

Randle cycle ( ). Following myocardial infarction, fatty acid oxidation accounts for almost all the heart ATP productionRandle , 1963 et al. 

( ; ). This over-reliance on fatty acid oxidation is detrimental to functional reperfusion recovery ofNeely and Morgan, 1974 Opie, 1975 

ischemic hearts ( ; ). Under such conditions, the beneficial effects of insulin are importantLopaschuk , 1990 et al. Lopaschuk , 1993 et al. 

for maintaining proper cardiac function. Insulin can increase glucose use by the heart both by activating key steps of glycolysis, namely

the recruitment of GLUT-4 to the plasma membrane and the activation of 6-phosphofructo-2-kinase ( ; Bertrand , 2008 et al. Rider and

; ) and by decreasing the extracellular fatty acid concentration. Also, insulin can directly alter fatty acidHue, 1984 Russell , 1999 et al. 

oxidation in the normoxic heart. The mechanism behind this involves inactivation of AMPK ( ; Gamble and Lopaschuk, 1997 Kudo ,et al. 

) which contributes to accelerated fatty acid oxidation direct phosphorylation and inactivation of ACC ( ; 1995 via Carling , 1989 et al. 
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) resulting in decreased malonyl-CoA, a potent inhibitor of fatty acid transport into the mitochondrial matrix (Hardie, 1992 McGarry ,et al. 

). Witters and Kemp have previously observed this inhibitory effect of insulin on AMPK activity in hepatoma cells (1989 Witters and

).Kemp, 1992 

As insulin is a very potent PKB/Akt activator in the heart ( ), Kovacic and coworkers investigated if increasedLefebvre , 1996 et al. 

PKB/Akt activity could lead to inactivation of AMPK. They demonstrated that hearts from transgenic mice expressing constitutively

active PKB/Akt show a dramatic reduction in AMPK phosphorylation, when compared to control hearts that do not express the transgene,

indicating that insulin-induced down-regulation of AMPK is mediated by Akt-dependent pathways ( ). PKB/Akt andKovacic , 2003 et al. 

AMPK have been shown to be inversely correlated in other occurrences too. For example, ischemia in heart causes activation of AMPK

and inhibits insulin signaling ( ), whereas priming of the hearts by insulin pre-treatment in the aerobic period bluntsBeauloye , 2001a et al. 

the AMPK response to a subsequent period of ischemia ( ; ). The molecular mechanism of theBeauloye , 2001b et al. Bertrand , 2006 et al. 

effect of insulin on AMPK signaling pathways has been elucidated as direct phosphorylation of AMPK by PKB/Akt on Ser 485/491 (

). This phosphorylation can prevent subsequent activation of AMPK at Th172 by LKB1. It is possible, as suggestedHorman , 2006 et al. 

by Zou and coworkers, that phosphorylation at Ser 485/491 hinders the physical association of AMPK with LKB1 ( ).Zou , 2004 et al. 

Although insulin inhibits AMPK under ischemia the glycolysis should remain elevated because both insulin and ischemia stimulate

glycolysis by activating the same key steps. Physiological relevance of this inhibition in ischemic hearts could also modulate other targets

of AMPK, as yet unknown. The ability of PKB/Akt to negatively regulate AMPK activity becomes especially relevant in the physiology of

myocardial ischemia-reperfusion. It is possible that PKB/Akt regulates fatty acid oxidation rates secondarily to inhibition of AMPK

activity. In addition, PKB/Akt is supposed to be protective by promoting the post-ischemic synthesis of contractile proteins and by

inhibiting myocyte apoptosis ( ; ; ), two processes conversely regulated by AMPK (Fujio , 2000 et al. Miao , 2000 et al. Ruan , 2009 et al. 

; ). However, the role of PKB/Akt remains controversial and remains to be further investigated, asHorman , 2003 et al. Meisse , 2002 et al. 

others argue against the beneficial effects of PKB/Akt negatively regulating AMPK ( ). Although the metabolicNagoshi , 2005 et al. 

effects of AMPK and PKB/Akt have been largely studied, the ability of PKB/Akt to inhibit AMPK has implications beyond cardiac

metabolism. Insulin and IGF-1 have been shown to induce protein synthesis and cardiac hypertrophy PKB/Akt activation (via Proud and

). AMPK antagonizes the stimulating effect of insulin by inhibiting the TSC2/mTOR/p70S6K ( ) and eEF2Denton, 1997 Inoki , 2003 et al. 

pathway ( ). It is therefore possible that the reduction of AMPK activity may be a contributing factor toHorman , 2002 et al. 

PKB/Akt-induced cardiac hypertrophy. Studies are ongoing to investigate this relationship.

Inhibition by inflammatory signals

Recent studies have suggested AMPK to play a crucial role in the inflammatory signaling pathways. AMPK activity has been shown

to be down-regulated upon pro-inflammatory stimulus (LPS) and up-regulated upon anti-inflammatory cytokine stimulation (IL-10 and

TGF- ) ( ). Also, inhibition of AMPK activity or expression increases the production of TNF , IL-6 and IL-1 uponβ Sag , 2008 et al. α
pro-inflammatory stimulus, whereas overexpression of AMPK results in the dampening of inflammatory response and increases the

production of IL-10 ( ; ). The effects of AMPK deficiency on the regulation of inflammatory status,Jeong , 2009 et al. Sag , 2008 et al. 

indicates that the presence of AMPK and its activation is important to counteract inflammation. Furthermore, increasing AMPK activity

with AICAR, or by transfection of a constitutively active AMPK catalytic subunit, blunts the ability of free fatty acids (palmitate) or TNFα
to activate NF B ( ). Accordingly, AMPK activation decreases severity of LPS-induced lung injury (κ Cacicedo , 2004 et al. in vivo Zhao et

) and the expression of pro-inflammatory genes in adipose tissue of obese mice ( ). A defect in AMPK, 2008 al. db/db Bai , 2010 et al. 

function has been found in various cells in animals with metabolic diseases. In diabetes and obesity, it is likely that AMPK activation is

compromised in inflammation-related cells and leads to the development of inflammatory diseases. Thus, AMPK may be a promising

pharmacologic target for the treatment of various chronic inflammatory diseases.

Obesity is a morbid condition characterized by an excess in fat mass and myriad co-morbidities. Among them, it is recognized that

insulin resistance promotes the development of type 2 diabetes. Interestingly, insulin resistance varies greatly among obese people, some

patients being severely insulin resistant while other remains insulin sensitive despite accumulation of body fat ( ; Brochu , 2001 et al. 

). Different hypothesis have been discussed to explain this variability. One of them postulated that obesity relatedGuilherme , 2008 et al. 

insulin resistance can be recognized as a state of chronic low-grade inflammation ( ; ; Lumeng , 2007 et al. Permana , 2006 et al. Rasouli et

; ). Macrophages in obese patients are in an inflammatory state and display increased NF B and TNF, 2005 al. Xu , 2003 et al. κ α
expression. TNF  induces insulin resistance through the serine phosphorylation of IRS protein by JNK and I /NF B and increases theα κ κ
expression of STAT3-suppressor of cytokine signaling 3 (SOCS3) ( ; ). Obesity favors increased rates ofKern , 2001 et al. Shi , 2004 et al. 

fatty acid uptake and esterification leading to storage of bioactive lipids such as ceramides, diacylglycerol (DAG) and fatty acyl-CoA in

tissues. These lipids contribute to the activation of inflammatory serine threonine kinases such as conventional PKCs, IKK-  and JNK (β
). Rates of fatty acid oxidation in skeletal muscle are also reduced in obese humans and rodents and this defect hasSchenk , 2008 et al. 

been correlated with reduced AMPK activity. Nevertheless, the mechanism connecting excess of lipids and decreased AMPK activity in

skeletal muscle has not been completely elucidated. To address this question, it has been shown in cultured L6 muscle cells that TNFα
reduced AMPK activity without change in LKB1 activity. TNF  suppresses AMPK activity which leads to defective fatty-acidα
metabolism, an important contributing factor to the development of insulin resistance in obesity ( ). TNF  mediatesSteinberg , 2006a et al. α
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its action through TNF receptor (TNFR) 1 to attenuate AMPK activity transcriptional upregulation of PP2C which results in reductionvia 

of ACC phosphorylation, suppressing fatty-acid oxidation, increasing intramuscular diacylglycerol accumulation and causing insulin

resistance in skeletal muscle. Using and approaches, Steinberg and coworkers provided for the first time conclusivein vitro in vivo 

evidence of AMPK as a link between inflammation and metabolic disease. According to these results, mice have also reducedob/ob 

muscular AMPK activity, inhibited fatty acid oxidation, increased PP2C expression in their skeletal muscle and reduced muscular insulin

sensitivity . In contrast, AMPK activity is not altered in TNFR /  mice indicating that disruption of TNF signaling preventsin vivo ob/ob − −
AMPK inhibition in this genetically obese mice model. Circulating free fatty acids (FFA) are often increased in obesity and they activate

TLR4 signaling-NF B-inflammation cascade (TNF  production) in adipocytes and macrophages which contributes to insulin resistance inκ α
skeletal muscle ( ). Interestingly, ablation of TLR4 signaling using TLR4 knockout mice protects against high fatShi , 2006 et al. 

diet-induced insulin resistance, due to reduced inflammation, linking innate immune system and metabolism. Activation of TLR4 by

endotoxin also leads to loss of AMPK phosphorylation under similar conditions where NF B pathway is activated in macrophage (κ Nath et

). These studies delineate a novel FFA/endotoxin-TLR4-NF B-TNF -loss of AMPK-insulin resistance pathway which could be, 2009 al. κ α
implicated in metabolic disorders ( ). In addition, it has been demonstrated that resistin, an adipocytokine elevated in obesity,Figure 3 

inhibited skeletal muscle AMPK activity. Consequent accumulation of lipids and their mediators probably explains resistin-mediated

insulin resistance during obesity. When insulin resistance occurs, reduced adiponectin levels can also contribute to continuous suppression

of AMPK activity. Because AMPK is a critical factor for mitochondrial biogenesis, long-term reduction of its activity can lead to

reduction of mitochondrial density/function in skeletal muscle, as observed in insulin resistance associated with obesity. Supporting this

hypothesis, treatment of mice by rosiglitazone or by adiponectin reduced TNF  synthesis and increased muscle mitochondrialob/ob α
biogenesis in parallel to metabolic improvement. In summary, it has been evidenced that excess of lipids can inhibit muscular AMPK

activity through increased proinflammatory cytokines pathway. Similar conclusions have been obtained in hearts of mice during excess

lipids availability. Indeed, acute lipid excess (5 hours of lipids infusion) or diet-induced obesity was both associated with blunted

myocardial glucose metabolism concomitantly with reduction of AMPK phosphorylation in heart ( ). These deleteriousKo , 2009 et al. 

effects of long-term or acute exposure to lipids are based on elevation of inflammatory cytokines (TNF  and IL-6) and increase inin vivo α
their myocardial signaling ( ). Myocardial levels of STAT3, CD68 and SOCS3, reduction of AMPK activity andSenn , 2002 et al. 

down-regulation of myocardial glucose metabolism are attenuated in IL-6 KO mice following high fat diet. This suggests that IL-6 is a key

component of the diet-induced myocardial inflammation and subsequent metabolic changes in heart. Chronic exposure of IL-6 (as

observed in obesity) promotes insulin resistance both and ( ). In contrast, during prolongedin vitro in vivo Nieto-Vazquez , 2008 et al. 

exercise, IL-6 is released acutely from the skeletal muscle ( ; ), AMPK is activated (Febbraio and Pedersen, 2005 Kelly , 2004 et al. Kelly 

) and leads to improved peripheral glucose uptake and insulin sensitivity at the whole body level ( ; , 2009 et al. Glund , 2007 et al. 

). This dual effect of IL-6 on insulin sensitivity probably explains some conflicting results recently discussed inRuderman , 2006 et al. 

more details elsewhere ( ).Nieto-Vazquez , 2008 et al. 

In general, AMPK functions solely to restore energy balance after depletion of energy stores. However, in T cells, Tamas and

coworkers ( ) proposed that its unique ability to anticipate energy-consuming processes could be useful for immuneTamas , 2006 et al. 

cells that need a rapid response to an increased demand for ATP. Activation of AMPK by TCR engagement was shown to be abrogated by

CaMKK inhibitor (STO-609) but not when it was activated by AMP/ATP ratio, suggesting two independent pathways for the regulation of

AMPK in T cells. Recently, it was reported that the AMPK 1 protein is lost in spleen macrophages, total T cells and their subsets (CD4,α
CD8 and regulatory T cells) isolated from experimental autoimmune encephalomyelitis (EAE) afflicted animals, compared to control,

without affecting its mRNA levels ( ), suggesting a posttranscriptional modification. Genetic ablation of AMPK 1 inNath , 2009 et al. α
mice exhibited severe disease with profound infiltration of mononuclear cells in central nervous system (CNS) compare to wild type mice.

Interestingly, AMPK 2 isoform does not participate in enhancing the severity of the disease.α

Inhibition of AMPK in the regulation of food intake

Recently, AMPK has emerged as a regulator of appetite. Indeed, hypothalamic AMPK is now recognized not only as a nutrient and

glucose sensor in the central nervous system (CNS) but also as a key regulator of appetite. Because the brain has an extremely high

metabolic rate and is a high lipid-containing tissue, the distribution of the AMPK isoforms throughout its various areas was considered as

an exciting area of research. Turnley and coworkers first reported the cellular distribution of AMPK isoforms in mouse CNS (Turnley et

). They demonstrated that these are widely expressed in neurons and in activated astrocytes. In addition, several groups showed, 1999 al. 

that AMPK isoforms are expressed in hypothalamus and hindbrain, both areas controlling food intake ( ). Studies pertaining toKola, 2008 

pharmacological or genetic activation as well as inhibition of hypothalamic AMPK lead to a better knowledge of hypothalamic AMPK

function as a regulator of food intake. It was first recognized that hypothalamic AMPK activation by AICAR infusion into the third

ventricle significantly increased food intake ( ). Confirming this first study, expression of dominant negative AMPKAndersson , 2004 et al. 

in the hypothalamus was reported to be sufficient to reduce food intake and body weight, whereas hypothalamic expression of

constitutively active AMPK isoform increased both ( ). In contrast with these previous studies, some conflictingMinokoshi , 2004 et al. 

data came from rodent models, especially 2 catalytic subunit specific knock out in hypothalamic Agouti-related peptide (AgRP) neuronsα
or in hypothalamic pro-opiomelanocortin (POMC) neurons. Indeed, in contrast to what could be expected from the data previously
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published, AMPK- 2 specific deletion in AgRP neurons did not change food intake nor energy expenditure whereas mice were lean.α
Furthermore, AMPK- 2 specific deletion in POMC neurons unexpectedly increased body weight and adiposity ( ). Toα Claret , 2007 et al. 

explain some of these surprising data, it was argued that AICAR or Compound C (as used previously in many studies) were not specific of

AMPK pathway and that genetically modified mice models may provide new insights into hypothalamic AMPK functions. In this regard,

study from Claret and coworkers clearly suggests that loss of AMPK in orexigenic (AgRP) neurons leads to reduced body weight whereas

lost of this enzyme in anorexigenic (POMC) neurons leads to increased body weight. Importantly, electrophysiological studies showed that

leptin or insulin action are both preserved in AMPK 2-deficient POMC or AgRP neurons. In consequence, this paper challenged theα
concept of hypothalamic AMPK as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.

Hypothalamic AMPK is regulated by various metabolic signals coming from the periphery ( ). It is now wellAhima and Antwi, 2008 

accepted that fasting results in activation of AMPK whereas re-feeding inhibits AMPK activity in multiple hypothalamic regions in mice (

). Specific effects of nutrients and hormones on hypothalamic AMPK activity have been investigated by different groups.Kola, 2008 

Peripheral or central hyperglycaemia is known to inhibit AMPK in all brain areas controlling appetite (such as the arcuate nucleus, the

ventro- and dorso-mediobasal hypothalamus, the paraventricular nucleus and the lateral hypothalamus ( ; Kim , 2004b et al. Minokoshi et

). In contrast, hypothalamic AMPK activity was increased (with greater food intake as a consequence) during insulin-induced, 2004 al. 

hypoglycemia or by inhibition of intracellular glucose utilization (administration of 2-deoxyglucose (2-DG)) ( ; Han , 2005 et al. Kim et al. 

). These data indicate that intraneuronal glucose concentration is a key modulator of hypothalamic AMPK activity. In order to, 2004b 

dissociate the respective effects of glucose and insulin on hypothalamic AMPK activity, i.c.v. insulin infusion can be used to study the

effects of insulin without any changes in glucose concentration. It has been demonstrated in this way that insulin inhibits hypothalamic

AMPK activity ( ). In consequence, hyperinsulinaemia and/or hyperglycaemia are now recognized as potentMinokoshi , 2004 et al. 

inhibitors of hypothalamic AMPK while hypoglycemia is an activator of this enzyme.

Leptin is a key hormone in the communication between energy stores and the brain. In contrast to what is observed in skeletal muscle,

leptin decreases hypothalamic AMPK activity ( ). Similarly, chronic calorie excess, as observed in diet-inducedMinokoshi , 2002 et al. 

obese mice, reduced hypothalamic AMPK activity ( ) probably by the inhibitory effects of combinedMartin , 2006 et al. 

hyperinsulinaemia, hyperglycaemia and increased secreted leptin. Presumably, leptin promotes loss of body weight by enhancing fat

oxidation in peripheral tissues and by decreasing food intake, suggesting that leptin has tissue-specific effects. It is not known if muscular

AMPK activation by leptin and concomitant reduction of hypothalamic AMPK activity by leptin are supported by different AMPK

isoforms. However, as discussed above, the hypothesis that hypothalamic AMPK could be a key mediator for the control of appetite by

leptin has been recently challenged when a normal response to leptin has been described in selective AMPK 2-deficient POMC or AgRPα
neurons ( ). Interestingly, it has been shown that like leptin, ciliary neurotrophic factor (CNTF) also suppressesClaret , 2007 et al. 

hypothalamic AMPK signaling and reduces food intake ( ). Importantly, despite the similarities in signalingSteinberg , 2006b et al. 

between leptin and CNTF, CNTF-mediated suppression of hypothalamic AMPK is maintained in diet-induced obesity, whereas the effects

of leptin on AMPK signaling are blunted. Thus, the capacity of CNTF to bypass leptin resistance highlights its potential role in the

therapeutic treatment of obesity.

AMPK activity is regulated by cellular energetic status, which can be summarized by the intracellular AMP/ATP ratio. Any

modification of glucose and/or lipids availability has consequences on AMPK activity. C75 is a fatty acid synthase (FAS) inhibitor which

causes weight loss and anorexia. This effect is linked to increased neuronal ATP content by C75 and reduced level of the phosphorylated

AMPK  subunit in the hypothalamus ( ). Anorectic effect induced by C75 is based on decreased phosphorylation ofα Kim , 2004a et al. 

cAMP response element-binding protein (CREB) in the arcuate nucleus and subsequent reduction in NPY expression ( ).Kim , 2004a et al. 

Similarly, -lipoic acid, a cofactor of mitochondrial enzymes that possesses antioxidative, antidiabetic and anorectic properties, inhibitsα
AMPK activity in the hypothalamus ( ).Kim , 2004b et al. 

Taking together the effects of nutrients, hormones and compounds described above, it can be postulated that hypothalamic AMPK is a

key sensor of whole-body energy status and regulates fuel availability and appetite. Nevertheless, many questions have to be solved. The

molecular mechanisms involved in the regulation of food intake by hypothalamic AMPK are not clearly understood. It can be noticed that

changes in hypothalamic activity AMPK may contribute to modifications of arcuate neuropeptide expression. Thus, reduction of

hypothalamic AMPK activity (by glucose, leptin, insulin, C75, -lipoic acid and melanocortin 4 receptor agonists) suppresses expressionα
of orexigenic neuropeptides, NPY and AgRP in arcuate nucleus. In contrast, increase in hypothalamic AMPK activity (by hypoglycemia,

ghrelin, cannabinoids and adiponectin) enhances the expression of orexigenic NPY and AgRP in arcuate nucleus and

melanin-concentrating hormone in the lateral hypothalamus ( ). In additional studies, it was shown thatMinokoshi , 2004 et al. 

hypothalamic AMPK and melanocortin pathways are interrelated. Indeed, melanocortin 4 receptor agonists decrease hypothalamic AMPK

activity whereas melanocortin receptor antagonists (as AgRP) increase hypothalamic AMPK ( ). In these cases, it is difficult toKola, 2008 

understand if AMPK activity is regulated by AgRP or melanocortin signaling independently of neuronal AMP/ATP ratio changes. Lastly,

beyond unspecific effects of AICAR or Compound C, rodent models overexpressing or deleted for hypothalamic AMPK provide evidence

of changes of AMPK activity and food intake. However, the extent of physiological relevance of these models could be discussed.
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Inhibition by resistin: implication for the regulation of glucose homeostasis

Resistin is a 12,5-kDa cysteine-rich protein secreted by adipose tissue of rodents and macrophages of humans ( ).Steppan , 2001 et al. 

The hypothesis that resistin could be a possible link between obesity and insulin resistance is controversial in humans in the light of recent

studies ( ; ). In contrast, consistent findings in rodents suggest that resistin plays a causative roleLee , 2003 et al. Nagaev and Smith, 2001 

in the development of diet-induced insulin resistance. Additionally, some studies support a link between deleterious metabolic effects of

resistin and reduction of AMPK activity. Indeed, a significant correlation has been shown between plasma resistin levels with high fat

feeding (or acute infusion of recombinant resistin), hepatic insulin resistance and diminished AMPK phosphorylation in liver (Muse ,et al. 

). Conversely, treatment with resistin specific antisense oligodeoxynucleotide reversed these effects. In addition, mice lacking resistin2004 

exhibit low blood glucose levels after fasting, due to reduced hepatic glucose production ( ). This is partly mediatedBanerjee , 2004 et al. 

by activation of AMPK and decreased expression of gluconeogenic enzymes in the liver. Taken together, these data indicated that resistin

is a key promoter of hepatic insulin resistance and that this effect could be partly mediated through reduction of hepatic AMPK activity.

Additional studies suggested that resistin acting on hypothalamus modulates hepatic glucose production. Thus, infusion of resistin in

the third cerebral ventricle ( ) or in the mediobasal hypothalamus was sufficient to enhance endogenous glucose production through anicv 

increase of TNF , IL-6, and SOCS-3 expression and a decrease of AMPK phosphorylation in the liver ( ). Thisα Muse , 2007 et al. 

suggested that hypothalamus is an important site of resistin action. It has been also shown that resistin reduces not only insulin-mediated

glucose transport ( ) and in isolated muscle cells ( ; ; in vivo Satoh , 2004 et al. Junkin , 2009 et al. Niederwanger , 2007 et al. Palanivel et

; ); but also AICAR-stimulated glucose uptake in muscle ( ). Basically, these, 2006 al. Palanivel and Sweeney, 2005 Jorgensen , 2009 et al. 

studies showed that resistin regulates the function of IRS-1 and Akt1 and decreases GLUT4 translocation and glucose uptake in response

to insulin. Short-term resistin incubation impairs glycogen synthesis by reducing the rate of glucose-6-phosphate formation by reduction of

hexokinase type I activity and reduction of glucose uptake ( ). Lastly, resistin decreases phosphorylation ofNiederwanger , 2007 et al. 

muscular AMPK and ACC ( ). Nevertheless, it can be noted that some studies used supra-physiologicalPalanivel and Sweeney, 2005 

concentrations of resistin. This could explain that in a recent study on mouse extensor digitorum longus (EDL), soleus muscles and L6

myotubes, physiological concentrations of resistin impair insulin-stimulated glucose uptake by mechanisms involving reduced plasma

membrane GLUT4 translocation but independently of the proximal insulin-signaling cascade, AMPK, and SOCS-3 (Jorgensen , 2009et al. 

).

AMPK inhibition in therapeutics
Neuroprotection in stroke: slowing down AMPK activation

Lack of blood and oxygen after ischemic stroke causes disruption of cell ion homeostasis and lead to neuronal cell death. To repair the

damage and return neurons to homeostasis, a number of energy-consuming processes are activated. Overactivation of these pathways

during ischemia can lead to complete energy failure and cell death. Activation of AMPK was initially considered to be an adaptive

response due to altered AMP/ATP ratio in response to ischemia, hypoxia, or glucose deprivation ( ; Culmsee , 2001 et al. Gadalla ,et al. 

; ) but there has been some discordance about the outcome on cell survival and neuroprotection. Some2004 McCullough , 2005 et al. 

groups proposed that AMPK represents an endogenous neuroprotective pathway conserving cellular energy levels under conditions of

intense metabolic stress ( ) or ischemic injury in addition to limiting neuronal injury via excitotoxicity (Culmsee , 2001 et al. Kuramoto et

). Conversely, McCullough and coworkers suggested that AMPK over-activation is detrimental in models of ischemia, 2007 al. 

reperfusion ( ). Pharmacological and genetic approaches were used to clarify the role of AMPK in strokeMcCullough , 2005 et al. 

outcome. AMPK inhibition with Compound C or with the fatty acid synthase inhibitor C75 (which reduces AMPK activation indirectly)

provided sustained neuroprotection after stroke ( ). Similarly, AMPK 2 knockout mice were protected from stroke damage (Li , 2007 et al. α
). Furthermore, the beneficial effect of Compound C was lost in AMPK 2 knockout mice implying that targeting neuronalLi , 2007 et al. α

energy balance during cerebral ischemia may be therapeutic ( ). However, the physiological consequences of AMPKLi , 2007 et al. 

activation after hypoxic stress on cerebral vasculature has been poorly investigated and it is not known if AMPK activation exacerbates or

ameliorates cerebral blood flow. In contrast, regarding peripheral vasculartue, many studies confirmed the beneficial effects of

pharmacological AMPK activation ( ; ; ; ; Bradley , 2010 et al. Davis , 2006 et al. Evans , 2005 et al. Rubin , 2005 et al. Wang , 2009 et al. 

), thereby favoring blood flow. Some of the protective actions of AMPK have been related to the activation of endothelial NO synthase

(eNOS) and formation of NO, which is a central signaling molecule in the vasculature ( ). AMPK has been shown toZou and Wu, 2008 

enhance eNOS activity by direct phosphorylation of Ser1177 ( ; ), Ser633 ( ) and byChen , 2000 et al. Chen , 1999 et al. Chen , 2009b et al. 

promoting its association with heat shock protein 90 ( ) leading to endothelial NO production. In addition, AMPK alsoDavis , 2006 et al. 

produces its regulatory effects in the peripheral vasculature through vascular endothelial growth factor (VEGF)-mediated endothelial

angiogenesis ( ; ; ). Interestingly, a recent study has shown increasedNagata , 2003 et al. Ouchi , 2005 et al. Stahmann , 2010 et al. 

phosphorylation of AMPK and eNOS in endothelial cells of cerebral arteries following severe subarachnoid hemorrhage (Osuka ,et al. 

). Thus, it is likely that AMPK causes beneficial effects in the brain vasculature through eNOS-mediated acute vasodilatation (2009 Osuka 

) or VEGF-induced angiogenesis ( )., 2009 et al. Lopez-Lopez , 2007 et al. 

AMPK inhibition in cancer: a two-edged sword?
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Several recent reports support the idea that the stimulation of AMPK with pharmacological compounds exerts antitumoral effect in

various experimental settings (reviewed in ( ; ). Furthermore, epidemiological analysesBillaud and Viollet, 2008 Fogarty and Hardie, 2009 

indicate that treatment with the anti-diabetic drug metformin may reduce the cancer burden in diabetic type 2 patients (reviewed in (

; ). These findings have led to the conception that pharmacological activators ofBillaud and Viollet, 2008 Fogarty and Hardie, 2009 

AMPK may find clinical applications in cancer chemoprevention and therapy. Since the LKB1-AMPK pathway inhibits mTOR, a kinase

overactivated in a broad range of tumors, AMPK activators may prove beneficial in a large spectrum of cancers. This idea is reinforced by

the observation that metformin is selectively toxic for malignant cells harboring p53-inactivating mutations ( ).Buzzai , 2007 et al. 

However, during specific stages of the tumorigenic process, activation of AMPK might provide a survival advantage to tumor cells. It is

clearly documented that nascent cancer cells and their metastatic counterparts are exposed to harsh microenvironmental conditions since

they have to cope with extrinsic cellular stresses such as hypoxia, acidosis, shortage of glucose and nutrients. In this context of energetic

stress and hypoxia, AMPK is activated and protects cells from apoptosis as demonstrated for pancreas cancer cells ( ).Kato , 2002 et al. 

Also, a recent report has provided evidence that the AMPK catalytic activity is triggered under low-oxygen conditions and is critical to

promote the growth of xenografted tumors prepared from Ras-transformed mouse embryonic fibroblasts ( ). It isLaderoute , 2006 et al. 

thus possible that activation of AMPK is a key event at defined steps of the sequential tumorigenic process. For instance, breast cancer

cells overcome anoikis, a cell death mechanism that leads to the self-destruction of epithelial cells detaching from the basement membrane,

through an increase of glucose uptake that restores the intracellular level of ATP and reduces reactive oxygen species (Schafer , 2009et al. 

). AMPK stimulates the transport of glucose through the GLUT1 transporter and may be involved in the capacity of tumors cells to

override cell death induced by loss of extracellular matrix attachment. In a larger prospect, the multiple metabolic pathways regulated by

AMPK possibly place this kinase as one of the main actors contributing to the metabolic reprogramming known as Warburg effect, which

is a hallmark of malignant cells ( ). Thus, it is conceivable that at certain stages of cancer progression, and forVander Heiden , 2009 et al. 

some types of malignancies, AMPK inhibition rather than activation may represent a potential way of therapeutic intervention. In any case,

the experimental arguments supporting a favoring role for AMPK during oncogenesis call for a cautious evaluation of possible pro-tumoral

effects of treatments that aims at activating AMPK in cancer prevention and chemotherapy.

Pharmacological AMPK inhibitor: the hidden side of Compound C

Compound C is a cell-permeable pyrrazolopyrimidine compound that can act as a reversible and ATP-competitive inhibitor of AMPK

( ). This compound is being used increasingly to inhibit AMPK in cell-based assays. However, several studies haveZhou , 2001 et al. 

reported inhibition of various biological events by Compound C independently of AMPK inhibition such as inhibition of the hypoxic

activation of HIF-1 by suppressing mitochondrial generated reactive oxygen species (ROS) ( ) and proliferation ofEmerling , 2007 et al. 

preadipocytes by increasing p21 levels ( ). Furthermore, Compound C does not inhibit AMPK activation in response to allNam , 2008 et al. 

stimuli. Thus, this pharmacological inhibitor blunted the AICAR-induced but not the dinitrophenol-induced ( ) or theFryer , 2002 et al. 

LPS-induced ( ) activation of AMPK. Further investigation showed that Compound C inhibits the adenosineLabuzek , 2010 et al. 

transporter ( ), the primary transporter for the uptake of AICAR into cells, suggesting that this pharmacological inhibitorFryer , 2002 et al. 

should not be used to demonstrate AMPK-dependent effects of AICAR. Lastly, Compound C appears to inhibit a number of other protein

kinases with lower IC values than AMPK indicating that this compound could certainly have off-target  effects ( ).50 ‘ ’ Bain , 2007 et al. 

However, despite the uncertain specificity of this pharmacological inhibitor, various reports suggest that in specific circumstances

Compound C inhibits AMPK with expected results. For example, the genetic approach combined with the pharmacological approach

further confirmed the AMPK-specific action of Compound C during stroke as the effect of this pharmacological inhibitor was lost in

AMPK 2 knockout mice ( ).α Li , 2007 et al. 

Concluding remarks

Since the initial description of the role of AMPK in modulating energy metabolism (as illustrated by regulation of lipid metabolism),

there has been an expanded interest in the role of AMPK in numerous physiological systems. AMPK integrates the activity of several

essential processes to maintain energy balance both at the single and the whole body levels. In recent years, additional mechanisms in the

AMPK regulation have been discovered and it is clear that multiple pathways for activation or inhibition of AMPK are now possible.

These various stimuli include nutrients, hormones, cytokines, physiological state as well as pathological events. A large body of

experimental evidence has clearly shown the therapeutic potential of pharmacological activation of AMPK in order to prevent or reverse

metabolic disorders associated with the metabolic syndrome. However, understanding the consequence of AMPK inhibition may suggest

novel therapeutic targets in a number of disease conditions. Thus, studies using genetic models with AMPK deficiency will be a great help

to define the role of AMPK in regulating physiological responses .in vivo 
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Figure 1
Domain organization of the catalytic  and regulatory  and  subunits of AMPKα β γ
Residues phosphorylated by AMPKK (LKB1, CaMKK , TAK1), PKA and Akt are shown within the  subunit.β α

Figure 2
Regulation of AMPK activation by phosphorylation/dephosphorylation
Phosphorylation of AMPK at Thr-172 is regulated by the upstream protein kinases LKB1, CaMKK  and possibly TAK1. Dephosphorylationβ
of AMPK at Thr172 is modulated by protein phosphatases PP2A and PP2C. Multiple effectors (nutrients, hormones and cytokines) regulating

AMPK phosphorylation and activity are listed.
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Figure 3
Regulation of AMPK activity by inflammatory signals
Activation of TLR4 by endotoxin and free fatty acid (FFA) regulates AMPK phosphorylation status through the action of protein phosphatase

(PP).


