G. Bowers, W. Cullinan, and J. Herman, Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits, J Neurosci, vol.18, pp.5938-5947, 1998.

P. Buckmaster, Highly specific cell loss of only one interneuron class in the dentate gyrus of kainate-induced epileptic rats, Epilepsia, vol.39, p.136, 1998.

P. Buckmaster and F. Dudek, Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats, The Journal of Comparative Neurology, vol.15, issue.3, pp.385-404, 1997.
DOI : 10.1002/(SICI)1096-9861(19970901)385:3<385::AID-CNE4>3.0.CO;2-#

J. Caboche, P. Vernier, J. Julien, M. Rogard, J. Mallet et al., Agonist, Journal of Neurochemistry, vol.259, issue.2, pp.428-435, 1991.
DOI : 10.1073/pnas.83.24.9827

J. Caboche, P. Vernier, M. Rogard, J. Julien, J. Mallet et al., Receptors in the Regulation of Glutamic Acid Decarboxylase Messenger RNA in the Striatum of the Rat, European Journal of Neuroscience, vol.259, issue.5, pp.438-447, 1992.
DOI : 10.1111/j.1460-9568.1992.tb00894.x

E. Cavalheiro, D. Silva, W. Turski, L. Calderazzo-filho, Z. Bortolotto et al., The susceptibility of rats to pilocarpine-induced seizures is age-dependent, Developmental Brain Research, vol.37, issue.1-2, pp.43-58, 1987.
DOI : 10.1016/0165-3806(87)90227-6

E. Cavalheiro, J. Leite, Z. Bortolotto, W. Turski, C. Ikonomidou et al., Long-Term Effects of Pilocarpine in Rats: Structural Damage of the Brain Triggers Kindling and Spontaneous I Recurrent Seizures, Epilepsia, vol.4, issue.6, pp.778-782, 1991.
DOI : 10.1002/syn.890030207

E. Cavalheiro, M. Fernandes, L. Turski, and M. Naffah-mazzacoratti, Spontaneous Recurrent Seizures in Rats: Amino Acid and Monoamine Determination in the Hippocampus, Epilepsia, vol.228, issue.1, pp.1-11, 1994.
DOI : 10.1016/0014-2999(87)90468-7

Y. Chang and D. Gottlieb, Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase, J Neurosci, vol.8, pp.2123-2130, 1988.

J. Cronin and F. Dudek, Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats, Brain Research, vol.474, issue.1, pp.181-184, 1988.
DOI : 10.1016/0006-8993(88)90681-6

C. Davenport, W. Brown, and T. Babb, Sprouting of GABAergic and mossy fiber axons in dentate gyrus following intrahippocampal kainate in the rat, Experimental Neurology, vol.109, issue.2, pp.180-190, 1990.
DOI : 10.1016/0014-4886(90)90072-Z

J. Delfs, V. Ciaramitaro, J. Soghomonian, and M. Chesselet, Unilateral nigrostriatal lesions induce a bilateral increase in glutamate decar???ylase messenger rna in the reticular thalamic nucleus, Neuroscience, vol.71, issue.2, pp.383-395, 1996.
DOI : 10.1016/0306-4522(95)00470-X

S. Drengler and G. Oltmans, Rapid increases in cerebellar Purkinje cell glutamic acid decar???ylase (GAD67) mRNA after lesion-induced increases in cell firing, Brain Research, vol.615, issue.1, pp.175-179, 1993.
DOI : 10.1016/0006-8993(93)91129-G

S. Drengler, J. Lorden, M. Billitz, and G. Oltmans, Adrenergic agents inhibit rapid increases in cerebellar Purkinje cell glutamic acid decarboxylase (GAD 67 ) mRNA levels after climbing fiber lesions or reserpine treatment, J Neurosci, vol.16, pp.1844-1851, 1996.

M. Erlander and A. Tobin, The structural and functional heterogeneity of glutamic acid decarboxylase: A review, Neurochemical Research, vol.14, issue.3, pp.215-226, 1991.
DOI : 10.1007/BF00966084

M. Erlander, N. Tillakaratne, S. Feldblum, N. Patel, and A. Tobin, Two genes encode distinct glutamate decarboxylases, Neuron, vol.7, issue.1, pp.91-100, 1991.
DOI : 10.1016/0896-6273(91)90077-D

M. Esclapez, N. Tillakaratne, A. Tobin, and C. Houser, Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods, The Journal of Comparative Neurology, vol.8, issue.3, pp.339-362, 1993.
DOI : 10.1002/cne.903310305

M. Esclapez, N. Tillakaratne, D. Kaufman, A. Tobin, and C. Houser, Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms, J Neurosci, vol.14, pp.1834-1855, 1994.

M. Esclapez, J. Hirsch, R. Khazipov, Y. Ben-ari, and C. Bernard, Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy, Proceedings of the National Academy of Sciences, vol.94, issue.22, pp.12151-12156, 1997.
DOI : 10.1073/pnas.94.22.12151

T. Falkenberg, N. Lindefors, O. Connor, W. Zachrisson, O. Camilli et al., GABA release and GAD67 mRNA expression in rat hippocampus following entorhinal cortex activation, Molecular Brain Research, vol.48, issue.2, pp.413-416, 1997.
DOI : 10.1016/S0169-328X(97)00185-X

S. Feldblum, R. Ackermann, and A. Tobin, Long term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy, Neuron, vol.5, issue.3, pp.361-371, 1990.
DOI : 10.1016/0896-6273(90)90172-C

T. Fukuda, Y. Aika, C. Heizmann, and T. Kosaka, GABAergic axon terminals at perisomatic and dendritic inhibitory sites show different immunoreactivities against two GAD isoforms, GAD67 and GAD65, in the mouse hippocampus: A digitized quantitative analysis, The Journal of Comparative Neurology, vol.78, issue.2, pp.177-194, 1998.
DOI : 10.1002/(SICI)1096-9861(19980601)395:2<177::AID-CNE3>3.0.CO;2-#

J. Gibbs, M. Shumate, and D. Coulter, Differential epilepsy-associated alterations in postsynaptic GABA A receptor function in dentate granule and CAI neurons, J Neurophysiol, vol.77, pp.1924-1938, 1997.

Y. Guiot and J. Rahier, The effects of varying key steps in the non-radioactive in situ hybridization protocol: a quantitative study, The Histochemical Journal, vol.41, issue.1, pp.60-68, 1995.
DOI : 10.1007/BF00164173

H. Höltke and C. Kessler, with the hapten digoxigenin (DIG); hybridization and ELISA-based detection, Nucleic Acids Research, vol.18, issue.19, pp.5843-5851, 1990.
DOI : 10.1093/nar/18.19.5843

C. Houser and M. Esclapez, GAD65 mRNA and protein labeling are increased in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy, Soc Neurosci Abstr, vol.20, p.408, 1994.

C. Houser and M. Esclapez, Localization of mRNAs encoding two forms of glutamic acid decarboxylase in the rat hippocampal formation, Hippocampus, vol.280, issue.5, pp.530-545, 1994.
DOI : 10.1002/hipo.450040503

C. Houser and M. Esclapez, Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures, Epilepsy Research, vol.26, issue.1, pp.207-218, 1996.
DOI : 10.1016/S0920-1211(96)00054-X

D. Kaufman, J. Mcginnis, N. Krieger, and A. Tobin, Brain glutamate decarboxylase cloned in lambda gt-11: fusion protein produces gamma-aminobutyric acid, Science, vol.232, issue.4754, pp.1138-1140, 1986.
DOI : 10.1126/science.3518061

D. Kaufman, C. Houser, and A. Tobin, Two Forms of the ?-Aminobutyric Acid Synthetic Enzyme Glutamate Decarboxylase Have Distinct Intraneuronal Distributions and Cofactor Interactions, Journal of Neurochemistry, vol.34, issue.2, pp.720-723, 1991.
DOI : 10.1016/0022-2836(86)90385-2

Y. Kobayashi, D. Kaufman, and A. Tobin, Glutamic acid decarboxylase cDNA: nucleotide sequence encoding an enzymatically active fusion protein, J Neurosci, vol.7, pp.2768-2772, 1987.

N. Laprade and J. Soghomonian, Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum, Molecular Brain Research, vol.34, issue.1, pp.65-74, 1995.
DOI : 10.1016/0169-328X(95)00139-J

N. Laprade and J. Soghomonian, MK-801 decreases striatal and cortical GAD65 mRNA levels, NeuroReport, vol.6, issue.14, pp.1885-1889, 1995.
DOI : 10.1097/00001756-199510020-00015

N. Laprade and J. Soghomonian, Glutamate decarboxylase (GAD65) gene expression is increased by dopamine receptor agonists in a subpopulation of rat striatal neurons, Molecular Brain Research, vol.48, issue.2, pp.333-345, 1997.
DOI : 10.1016/S0169-328X(97)00112-5

L. Larsson and D. Hougaard, Optimization of non-radioactive in situ hybridization: image analysis of varying pretreatment, hybridization and probe labelling conditions, Histochemistry, vol.3, issue.4, pp.347-354, 1990.
DOI : 10.1007/BF00315849

L. Larsson and D. Hougaard, Sensitive detection of rat gastrin mRNA by in situ hybridization with chemically biotinylated oligodeoxynucleotides: validation, quantitation, and double-staining studies., Journal of Histochemistry & Cytochemistry, vol.41, issue.2, pp.157-163, 1993.
DOI : 10.1177/41.2.8419457

L. Larsson and D. Hougaard, Evidence for paracrine somatostatinergic regulation of gastrin gene expression by double-staining cytochemistry and quantitation., Journal of Histochemistry & Cytochemistry, vol.42, issue.1, pp.37-40, 1994.
DOI : 10.1177/42.1.7903328

L. Larsson and D. Hougaard, Glass slide models for immunocytochemistry and in situ hybridization, Histochemistry, vol.34, issue.5, pp.325-331, 1994.
DOI : 10.1007/BF00268993

L. Larsson, B. Traasdahl, and D. Hougaard, Quantitative nonradioactive in situ hybridization. Model studies and studies on pituitary proopiomelanocortin cells after adrenalectomy, Histochemistry, vol.95, pp.209-215, 1991.

J. Litwak, M. Mercugliano, M. Chesselet, and G. Oltmans, Increased glutamic acid decarboxylase (GAD) mRNA and GAD activity in cerebellar Purkinje cells following lesion-induced increases in cell firing, Neuroscience Letters, vol.116, issue.1-2, pp.179-183, 1990.
DOI : 10.1016/0304-3940(90)90406-Y

W. Lu and S. Haber, In situ hybridization histochemistry: a new method for processing material stored for several years, Brain Research, vol.578, issue.1-2, pp.155-160, 1992.
DOI : 10.1016/0006-8993(92)90243-3

D. Martin and K. Rimvall, Regulation of ?-Aminobutyric Acid Synthesis in the Brain, Journal of Neurochemistry, vol.42, issue.2, pp.395-407, 1993.
DOI : 10.1016/0169-328X(90)90016-7

D. Martin, S. Martin, S. Wu, and N. Espina, Cofactor interactions and the regulation of glutamate decarboxylase activity, Neurochemical Research, vol.6, issue.suppl 2, pp.243-249, 1991.
DOI : 10.1007/BF00966087

D. Martin, S. Martin, S. Wu, and N. Espina, Regulatory properties of brain glutamate decarboxylase (GAD): the apoenzyme of GAD is present principally as the smaller of two molecular forms of GAD in brain, J Neurosci, vol.11, pp.2725-2731, 1991.

G. Mathern, T. Babb, J. Pretorius, and J. Leite, Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata, J Neurosci, vol.15, pp.3990-4004, 1995.

M. Mccarthy, L. Kaufman, P. Brooks, D. Pfaff, and S. Schwartz-giblin, Estrogen modulation of mRNA levels for the two forms of glutamic acid decarboxylase (GAD) in female rat brain, The Journal of Comparative Neurology, vol.19, issue.4, pp.685-697, 1995.
DOI : 10.1002/cne.903600412

L. Mello, E. Cavalheiro, A. Tan, W. Kupfer, J. Pretorius et al., Circuit Mechanisms of Seizures in the Pilocarpine Model of Chronic Epilepsy: Cell Loss and Mossy Fiber Sprouting, Epilepsia, vol.200, issue.6, pp.985-995, 1993.
DOI : 10.1002/syn.890030207

F. Morin, C. Beaulieu, and J. Lacaille, Selective loss of GABA neurons in area CA1 of the rat hippocampus after intraventricular kainate, Epilepsy Research, vol.32, issue.3, pp.363-369, 1998.
DOI : 10.1016/S0920-1211(98)00033-3

J. Nadler, B. Perry, C. Gentry, and C. Cotman, Fate of the hippocampal mossy fiber projection after destruction of its postsynaptic targets with intraventricular kainic acid, The Journal of Comparative Neurology, vol.76, issue.4, pp.549-569, 1981.
DOI : 10.1002/cne.901960404

A. Obenaus, M. Esclapez, and C. Houser, Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures, J Neurosci, vol.13, pp.4470-4485, 1993.

D. Rempe, E. Bertram, J. Williamson, and E. Lothman, Interneurons in area CA1 stratum radiatum and stratum oriens remain functionally connected to excitatory synaptic input in chronically epileptic animals, J Neurophysiol, vol.45, pp.1504-1515, 1997.

K. Rimvall and D. Martin, Increased Intracellular ?-Aminobutyric Acid Selectively Lowers the Level of the Larger of Two Glutamate Decarboxylase Proteins in Cultured GABAergic Neurons from Rat Cerebral Cortex, Journal of Neurochemistry, vol.47, issue.1, pp.158-166, 1992.
DOI : 10.1016/0165-3806(81)90005-5

K. Rimvall and D. Martin, The Level of GAD67 Protein Is Highly Sensitive to Small Increases in Intraneuronal ??-Aminobutyric Acid Levels, Journal of Neurochemistry, vol.35, issue.4, pp.1375-1381, 1994.
DOI : 10.1046/j.1471-4159.1994.62041375.x

K. Rimvall, S. Sheikh, and D. Martin, Protein and mRNA Levels in Rat Cerebral Cortex, Journal of Neurochemistry, vol.47, issue.2, pp.714-720, 1993.
DOI : 10.1016/0169-328X(90)90016-7

C. Schwarzer and G. Sperk, Hippocampal granule cells express glutamic acid decar???ylase-67 after limbic seizures in the rat, Neuroscience, vol.69, issue.3, pp.705-709, 1995.
DOI : 10.1016/0306-4522(95)00348-M

C. Schwarzer, J. Williamson, E. Lothman, A. Vezzani, and G. Sperk, Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy, Neuroscience, vol.69, issue.3, pp.831-845, 1995.
DOI : 10.1016/0306-4522(95)00268-N

R. Sloviter, Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The ?dormant basket cell? hypothesis and its possible relevance to temporal lobe epilepsy, Hippocampus, vol.15, issue.1, pp.41-66, 1991.
DOI : 10.1002/hipo.450010106

R. Sloviter, M. Dichter, T. Rachinsky, E. Dean, J. Goodman et al., Basal expression and induction of glutamate decarboxylase GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus, The Journal of Comparative Neurology, vol.46, issue.4, pp.593-618, 1996.
DOI : 10.1002/(SICI)1096-9861(19960930)373:4<593::AID-CNE8>3.0.CO;2-X

J. Soghomonian and M. Chesselet, Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat, Synapse, vol.1, issue.2, pp.124-133, 1992.
DOI : 10.1002/syn.890110205

J. Soghomonian, C. Gonzales, and M. Chesselet, Messenger RNAs encoding glutamate-decar???ylases are differentially affected by nigrostriatal lesions in subpopulations of striatal neurons, Brain Research, vol.576, issue.1, pp.68-79, 1992.
DOI : 10.1016/0006-8993(92)90610-L

I. Soltesz and I. Mody, Patch-clamp recordings reveal powerful GABAergic inhibition in dentate hilar neurons, J Neurosci, vol.14, issue.4, pp.2365-2376, 1994.

G. Sperk, J. Marksteiner, B. Gruber, R. Bellmann, M. Mahata et al., Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat, Neuroscience, vol.50, issue.4, pp.831-846, 1992.
DOI : 10.1016/0306-4522(92)90207-I

T. Sutula, H. Xiao-xian, J. Cavazos, and G. Scott, Synaptic reorganization in the hippocampus induced by abnormal functional activity, Science, vol.239, issue.4844, pp.1147-1150, 1988.
DOI : 10.1126/science.2449733

W. Turski, E. Cavalheiro, M. Schwarz, S. Czuczwar, Z. Kleinrok et al., Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study, Behavioural Brain Research, vol.9, issue.3, pp.315-336, 1983.
DOI : 10.1016/0166-4328(83)90136-5

L. Turski, E. Cavalheiro, M. Sieklucka-dziuba, C. Ikonomidou-turski, S. Czuczwar et al., Seizures produced by pilocarpine: Neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain, Brain Research, vol.398, issue.1, pp.37-48, 1986.
DOI : 10.1016/0006-8993(86)91247-3

R. Watson, . Jr, S. Wiegand, R. Clough, and G. Hoffman, Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology, Peptides, vol.7, issue.1, pp.155-159, 1986.
DOI : 10.1016/0196-9781(86)90076-8

L. Zhang, A. Ravipati, J. Joseph, and G. Roth, Aging-related changes in rat striatal D 2 receptor mRNA-containing neurons: a quantitative nonradioactive in situ hybridization study, J Neurosci, vol.15, pp.1735-1740, 1995.