E. Carroll and M. Wong-r-iley, Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey, The Journal of Comparative Neurology, vol.77, issue.1, pp.1-17, 1984.
DOI : 10.1002/cne.902220102

L. Chalupa and C. Snider, Topographic specificity in the retinocollicular projection of the developing ferret: An anterograde tracing study, The Journal of Comparative Neurology, vol.2, issue.1, pp.35-47, 1998.
DOI : 10.1002/(SICI)1096-9861(19980302)392:1<35::AID-CNE3>3.0.CO;2-Q

B. Chapman and T. Bonhoeffer, Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17, Proceedings of the National Academy of Sciences, vol.95, issue.5, pp.2609-2614, 1998.
DOI : 10.1073/pnas.95.5.2609

B. Chapman, M. Stryker, and T. Bonhoeffer, Development of orientation preference maps in ferret primar y visual cortex, J Neurosci, vol.16, pp.6443-6453, 1996.

B. Clancy, R. Darlington, and B. Finlay, Translating developmental time across mammalian species, Neuroscience, vol.105, issue.1, pp.7-17, 2001.
DOI : 10.1016/S0306-4522(01)00171-3

K. Cramer, A. Angelucci, J. Hahm, M. Bogdanov, and M. Sur, A role for nitric oxide in the development of the ferret retinogeniculate projection, J Neurosci, vol.16, pp.7995-8004, 1996.

C. Dehay, H. Kennedy, and C. Meissirel, A transient pathway interconnecting the cerebral hemispheres via the anterior commissure in the neonatal ferret, J Physiol, vol.400, p.45, 1980.

B. Dreher, C. Wang, K. Turleski, R. Djavadian, and W. Burke, Areas PMLS and 21 a of Cat Visual Cortex: Two Functionally Distinct Areas, Cerebral Cortex, vol.6, issue.4, pp.585-599, 1996.
DOI : 10.1093/cercor/6.4.585

F. Gallyas, Silver Staining of Myelin by Means of Physical Development, Neurological Research, vol.1, issue.2, pp.203-209, 1979.
DOI : 10.1080/01616412.1979.11739553

E. Glaser, M. Tagamets, N. Mcmullen, and H. Van-der-loos, The image-combining computer microscope ??? an interactive instrument for morphometry of the nervous system, Journal of Neuroscience Methods, vol.8, issue.1, pp.17-32, 1983.
DOI : 10.1016/0165-0270(83)90048-1

A. Grigonis, R. Rayos, D. Sol-padua, and E. Murphy, Abstract, Visual Neuroscience, vol.9, issue.01, pp.99-103, 1992.
DOI : 10.1002/cne.901430107

M. Gurewitsch and A. Chatschaturian, Zur Cytoarchitektonik der Gro??hirnrinde der Feliden, Zeitschrift f??r Anatomie und Entwicklungsgeschichte, vol.87, issue.1-2, pp.283-312, 1928.
DOI : 10.1007/BF02322228

C. Heath and E. Jones, The anatomical organization of the suprasylvian gyrus of the cat, Ergebn Anat Entw Gesch, vol.45, issue.3, pp.1-64, 1971.
DOI : 10.1007/978-3-642-48154-3

J. Houzel, C. Milleret, and G. Innocenti, Morphology of Callosal Axons Interconnecting Areas 17 and 18 of the Cat, European Journal of Neuroscience, vol.12, issue.Suppl., pp.898-917, 1994.
DOI : 10.1111/j.1460-9568.1994.tb00585.x

D. Hubel and T. Wiesel, Receptive fields and functional architecture in two non-striate visual areas (18 and, 19) of the cat, J Neurophysiol, vol.28, pp.229-289, 1965.

D. Hubel and T. Wiesel, Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat, The Journal of Physiology, vol.202, issue.1, pp.251-260, 1969.
DOI : 10.1113/jphysiol.1969.sp008808

G. Innocenti, The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat, Arch Ital Biol, vol.118, pp.124-188, 1980.

G. Innocenti, General Organization of Callosal Connections in the Cerebral Cortex, In: Cerebral cortex, vol.5, pp.291-353, 1986.
DOI : 10.1007/978-1-4613-2149-1_9

G. Innocenti, Exuberant development of connections, and its possible permissive role in cortical evolution, Trends in Neurosciences, vol.18, issue.9, pp.397-402, 1995.
DOI : 10.1016/0166-2236(95)93936-R

G. Innocenti, L. Fiore, and R. Caminiti, Exuberant projection into the corpus callosum from the visual cortex of newborn cats, Neuroscience Letters, vol.4, issue.5, pp.237-242, 1977.
DOI : 10.1016/0304-3940(77)90185-9

M. Jouandet, Neocortical and basal telencephalic origins of the anterior commissure of the cat, Neuroscience, vol.7, issue.7, pp.1731-1752, 1982.
DOI : 10.1016/0306-4522(82)90031-8

G. Keller and G. Innocenti, Callosal connections of suprasylvian visual areas in the cat, Neuroscience, vol.6, issue.4, pp.703-712, 1981.
DOI : 10.1016/0306-4522(81)90154-8

M. Law, K. Zahs, and M. Str-yker, Organization of primary visual cortex (area 17) in the ferret, The Journal of Comparative Neurology, vol.59, issue.2, pp.157-180, 1988.
DOI : 10.1002/cne.902780202

D. Linden, R. Guillery, and J. Cucchiaro, The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development, The Journal of Comparative Neurology, vol.138, issue.2, pp.189-211, 1981.
DOI : 10.1002/cne.902030204

P. Manger, D. Kiper, I. Masiello, L. Murillo, L. Tettoni et al., The Representation of the Visual Field in Three Extrastriate Areas of the Ferret (Mustela putorius) and the Relationship of Retinotopy and Field Boundaries to Callosal Connectivity, Cerebral Cortex, vol.12, issue.4, pp.423-437, 2002.
DOI : 10.1093/cercor/12.4.423

S. Mcconnell, Migration and differentiation of cerebral cortical neurons after transplantation into the brains of ferrets, Science, vol.229, issue.4719, pp.1268-1271, 1985.
DOI : 10.1126/science.4035355

M. Mesulam and T. Brushart, Transganglionic and anterograde transport of horseradish peroxidase across dorsal root ganglia: A tetramethylbenzidine method for tracing central sensory connections of muscles and peripheral nerves, Neuroscience, vol.4, issue.8, pp.1107-1117, 1979.
DOI : 10.1016/0306-4522(79)90192-1

O. Leary, D. Schlaggar, B. Tuttle, and R. , Specification of Neocortical Areas and Thalamocortical Connections, Annual Review of Neuroscience, vol.17, issue.1, pp.419-439, 1994.
DOI : 10.1146/annurev.ne.17.030194.002223

J. Olavarria, V. Sluyters, and R. , Organization and postnatal development of callosal connections in the visual cortex of the rat, The Journal of Comparative Neurology, vol.226, issue.1, pp.1-26, 1985.
DOI : 10.1002/cne.902390102

J. Olavarria, V. Sluyters, and R. , Overall pattern of callosal connections in visual cortex of normal and enucleated cats, The Journal of Comparative Neurology, vol.194, issue.2, pp.161-176, 1995.
DOI : 10.1002/cne.903630202

R. Otsuka and R. Hassler, Über aufbau und gliederung der corticalen sehsphäre bei der katze, Arc Psychiat Zeitschrift Neurol, vol.203, pp.212-234, 1962.

S. Pallas, T. Littman, and D. Moore, Cross-modal reorganization of callosal connectivity without altering thalamocortical projections, Proceedings of the National Academy of Sciences, vol.96, issue.15, pp.8751-8756, 1999.
DOI : 10.1073/pnas.96.15.8751

L. Palmer, A. Rosenquist, and R. Tusa, The retinotopic organization of lateral suprasylvian visual areas in the cat, The Journal of Comparative Neurology, vol.223, issue.2, pp.237-256, 1978.
DOI : 10.1002/cne.901770205

B. Payne, Evidence for Visual Cortical Area Homologs in Cat and Macaque Monkey, Cerebral Cortex, vol.3, issue.1, pp.1-25, 1993.
DOI : 10.1093/cercor/3.1.1

B. Payne and D. Siwek, Abstract, Visual Neuroscience, vol.44, issue.03, pp.221-236, 1991.
DOI : 10.1002/cne.901550402

D. Price, Patterns of cytochrome oxidase activity in areas 17, 18 and 19 of the visual cortex of cats and kittens, Experimental Brain Research, vol.58, issue.1, pp.125-133, 1985.
DOI : 10.1007/BF00238960

C. Ragsdale and E. Grove, Patterning the mammalian cerebral cortex, Current Opinion in Neurobiology, vol.11, issue.1, pp.50-58, 2001.
DOI : 10.1016/S0959-4388(00)00173-2

P. Rakic, Specification of cerebral cortical areas, Science, vol.241, issue.4862, pp.170-176, 1988.
DOI : 10.1126/science.3291116

C. Redies and M. Diksic, Functional organization in the ferret visual cortex: a double-label 2-deoxyglucose study, J Neurosci, vol.10, pp.2791-2803, 1990.

K. Rock, Anatomical organization of primary visual cortex (area 17) in the ferret, J Comp Neurol, vol.241, pp.225-236, 1985.

F. Sanides and J. Hoffmann, Cyto-and myeloarchitecture of the visual cortex of the cat and the surrounding integration cortices, J Hirnforsch, vol.1, pp.79-104, 1967.

C. Shatz, Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats, The Journal of Comparative Neurology, vol.168, issue.3, pp.497-518, 1977.
DOI : 10.1002/cne.901730307

H. Sherk, Location and connections of visual cortical areas in the cat's suprasylvian sulcus, The Journal of Comparative Neurology, vol.101, issue.1, pp.1-31, 1986.
DOI : 10.1002/cne.902470102

R. Tusa and L. Palmer, Retinotopic organization of areas 20 and 21 in the cat, The Journal of Comparative Neurology, vol.236, issue.1, pp.147-164, 1980.
DOI : 10.1002/cne.901930110

R. Tusa, A. Rosenquist, and L. Palmer, Retinotopic organization of areas 18 and 19 in the cat, The Journal of Comparative Neurology, vol.11, issue.4, pp.657-678, 1979.
DOI : 10.1002/cne.901850405

B. Updyke, Retinotopic organization within the cat's posterior suprasylvian sulcus and gyrus, The Journal of Comparative Neurology, vol.8, issue.2, pp.265-280, 1986.
DOI : 10.1002/cne.902460210

D. Van-essen and S. Zeki, The topographic organization of rhesus monkey prestriate cortex., The Journal of Physiology, vol.277, issue.1, pp.193-226, 1978.
DOI : 10.1113/jphysiol.1978.sp012269

W. Welker, Why does the cerebral cortex fissure and fold? A review of determinants of gyri and sulci Comparative structure and evolution of cerebral cortex, part II, In: Cerebral cortex, vol.8, pp.3-138, 1990.

L. White, W. Bosking, S. Williams, and D. Fitzpatrick, Maps of central visual space in ferret V1 and V2 lack matching input from the two eyes, J Neurosci, vol.19, pp.7089-7099, 1999.