J. J. Lawrence, Interneuron Diversity series: Containing the detonation ??? feedforward inhibition in the CA3 hippocampus, Trends in Neurosciences, vol.26, issue.11, pp.631-640, 2003.
DOI : 10.1016/j.tins.2003.09.007

T. F. Freund, Interneuron Diversity series: Rhythm and mood in perisomatic inhibition, Trends in Neurosciences, vol.26, issue.9, pp.489-495, 2003.
DOI : 10.1016/S0166-2236(03)00227-3

G. Maccaferri, Interneuron Diversity series: Hippocampal interneuron classifications ??? making things as simple as possible, not simpler, Trends in Neurosciences, vol.26, issue.10, pp.564-571, 2003.
DOI : 10.1016/j.tins.2003.08.002

Y. Ben-ari, Excitatory actions of gaba during development: the nature of the nurture, Nature Reviews Neuroscience, vol.3, issue.9, pp.728-739, 2002.
DOI : 10.1038/nrn920

URL : https://hal.archives-ouvertes.fr/inserm-00484852

O. Marin, A long, remarkable journey: Tangential migration in the telencephalon, Nature Reviews Neuroscience, vol.73, issue.11, pp.780-790, 2001.
DOI : 10.1038/35097509

K. Letinic, Origin of GABAergic neurons in the human neocortex, Nature, vol.23, issue.6889, pp.645-649, 2002.
DOI : 10.1038/nn0901-931

P. Rakic, A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends in Neurosciences, vol.18, issue.9, pp.383-388, 1995.
DOI : 10.1016/0166-2236(95)93934-P

M. Marin-padilla, Cajal???Retzius cells and the development of the neocortex, Trends in Neurosciences, vol.21, issue.2, pp.64-71, 1998.
DOI : 10.1016/S0166-2236(97)01164-8

J. B. Angevine, Autoradiographic Study of Cell Migration during Histogenesis of Cerebral Cortex in the Mouse, Nature, vol.13, issue.4804, pp.766-776, 1961.
DOI : 10.1038/192766b0

P. Rakic, Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus, The Journal of Comparative Neurology, vol.8, issue.3, pp.283-312, 1971.
DOI : 10.1002/cne.901410303

R. L. Sidman, Neuronal migration, with special reference to developing human brain: a review, Brain Research, vol.62, issue.1, pp.1-35, 1973.
DOI : 10.1016/0006-8993(73)90617-3

E. Soriano, Asynchronism in the neurogenesis of GABAergic and non-GABAergic neurons in the mouse hippocampus, Developmental Brain Research, vol.30, issue.1, pp.88-92, 1986.
DOI : 10.1016/0165-3806(86)90134-3

F. Rozenberg, Distribution of GABAergic neurons in late fetal and early postnatal rat hippocampus, Developmental Brain Research, vol.50, issue.2, pp.177-187, 1989.
DOI : 10.1016/0165-3806(89)90193-4

S. T. Dupuy, Prominent expression of two forms of glutamate decarboxylase in the embryonic and early postnatal rat hippocampal formation, J. Neurosci, vol.16, pp.6919-6932, 1996.

D. Tanaka, Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins, Development, vol.130, issue.23, pp.5803-5813, 2003.
DOI : 10.1242/dev.00825

G. Chen, GABA receptors precede glutamate receptors in hypothalamic development; differential regulation by astrocytes, J. Neurophysiol, vol.74, pp.1473-1484, 1995.

H. Koller, GABA and glutamate receptor development of cultured neurons from rat hippocampus, septal region, and neocortex, Synapse, vol.461, issue.Suppl. 1, pp.59-64, 1990.
DOI : 10.1002/syn.890050105

R. Tyzio, The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite, J. Neurosci, vol.19, pp.10372-10382, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00487269

S. Hennou, and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus, European Journal of Neuroscience, vol.11, issue.2, pp.197-208, 2002.
DOI : 10.1016/s0306-4522(98)00302-9

URL : https://hal.archives-ouvertes.fr/inserm-00484849

R. Khazipov, Early development of neuronal activity in the primate hippocampus in utero, J. Neurosci, vol.21, pp.9770-9781, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00484885

R. Nitsch, Late appearance of parvalbumin-immunoreactivity in the development of GABAergic neurons in the rat hippocampus, Neuroscience Letters, vol.118, issue.2, pp.147-150, 1990.
DOI : 10.1016/0304-3940(90)90613-E

H. Gozlan, Interneurons are the Source and the Targets of the First Synapses Formed in the Rat Developing Hippocampal Circuit, Cerebral Cortex, vol.13, issue.6, pp.684-692, 2003.
DOI : 10.1093/cercor/13.6.684

URL : https://hal.archives-ouvertes.fr/inserm-00484793

Y. M. Morozov, Postnatal development and migration of cholecystokinin-immunoreactive interneurons in rat hippocampus, Neuroscience, vol.120, issue.4, pp.923-939, 2003.
DOI : 10.1016/S0306-4522(03)00409-3

A. I. Gulyas, Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus, J. Neurosci, vol.16, pp.3397-3411, 1996.

T. F. Freund, Interneurons of the hippocampus, Hippocampus, vol.495, issue.1, pp.347-470, 1996.
DOI : 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I

URL : https://hal.archives-ouvertes.fr/inserm-00484796

M. Jiang, Expression of calretinin in diverse neuronal populations during development of rat hippocampus, Neuroscience, vol.81, issue.4, pp.1137-1154, 1997.
DOI : 10.1016/S0306-4522(97)00231-5

Y. Ben-ari, Giant synaptic potentials in immature rat CA3 hippocampal neurones., The Journal of Physiology, vol.416, issue.1, pp.303-325, 1989.
DOI : 10.1113/jphysiol.1989.sp017762

X. Leinekugel, Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus, Neuron, vol.18, issue.2, pp.243-255, 1997.
DOI : 10.1016/S0896-6273(00)80265-2

URL : https://hal.archives-ouvertes.fr/inserm-00522468

R. Tyzio, Membrane Potential of CA3 Hippocampal Pyramidal Cells During Postnatal Development, Journal of Neurophysiology, vol.90, issue.5, pp.2964-2972, 2003.
DOI : 10.1152/jn.00172.2003

URL : https://hal.archives-ouvertes.fr/inserm-00484799

X. Leinekugel, Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices., The Journal of Physiology, vol.487, issue.2, pp.319-329, 1995.
DOI : 10.1113/jphysiol.1995.sp020882

E. Delpire, Cation ? chloride cotransporters in neuronal communication, News Physiol. Sci, vol.15, pp.309-312, 2000.

C. Rivera, The K þ /Cl 2 co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, vol.397, pp.251-255, 1999.

V. Stein, Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride, Journal of Comparative Neurology, vol.56, issue.1, pp.57-64, 2004.
DOI : 10.1002/cne.10983

K. Ganguly, GABA Itself Promotes the Developmental Switch of Neuronal GABAergic Responses from Excitation to Inhibition, Cell, vol.105, issue.4, pp.521-532, 2001.
DOI : 10.1016/S0092-8674(01)00341-5

A. Ludwig, Developmental up-regulation of KCC2 in the absence of GABAergic and glutamatergic transmission, European Journal of Neuroscience, vol.444, issue.12, 2003.
DOI : 10.1074/jbc.274.18.12656

S. Titz, Hyperpolarizing Inhibition Develops without Trophic support by GABA in Cultured Rat Midbrain Neurons, The Journal of Physiology, vol.6, issue.3, pp.719-730, 2003.
DOI : 10.1113/jphysiol.2003.041863

J. A. Payne, Cation???chloride co-transporters in neuronal communication, development and trauma, Trends in Neurosciences, vol.26, issue.4, pp.199-206, 2003.
DOI : 10.1016/S0166-2236(03)00068-7

E. Delpire, Human and Murine Phenotypes Associated with Defects in Cation-Chloride Cotransport, Annual Review of Physiology, vol.64, issue.1, pp.803-843, 2002.
DOI : 10.1146/annurev.physiol.64.081501.155847

J. M. Russell, Sodium ? potassium ? chloride cotransport, Physiol . Rev, vol.80, pp.211-276, 2000.

J. Wellmer, Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus, European Journal of Neuroscience, vol.51, issue.Suppl. 1, pp.259-266, 2002.
DOI : 10.1016/s0306-4522(97)00463-6

Y. Yaari, Plasticity of intrinsic neuronal excitability after status epilepticus: time course and ionic mechanisms, Epilepsia

F. Strata, A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus, J. Neurosci, vol.17, pp.1435-1446, 1997.

H. Super, Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus, 1998.

N. Savic, N-methyl-D-aspartate receptor blockade during development lowers long-term potentiation threshold without affecting dynamic range of CA3-CA1 synapses, Proceedings of the National Academy of Sciences, vol.100, issue.9, pp.5503-5508, 2003.
DOI : 10.1073/pnas.0831035100

G. Barbin, Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons, Neuroscience Letters, vol.152, issue.1-2, pp.150-154, 1993.
DOI : 10.1016/0304-3940(93)90505-F

F. Ji, GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase, Neuroscience Research, vol.33, issue.3, pp.187-194, 1999.
DOI : 10.1016/S0168-0102(99)00011-5

T. K. Hensch, Local GABA Circuit Control of Experience-Dependent Plasticity in Developing Visual Cortex, Science, vol.282, issue.5393, pp.1504-1508, 1998.
DOI : 10.1126/science.282.5393.1504

T. Misgeld, Roles of Neurotransmitter in Synapse Formation, Neuron, vol.36, issue.4, pp.635-648, 2002.
DOI : 10.1016/S0896-6273(02)01020-6

M. Demarque, Paracrine Intercellular Communication by a Ca2+- and SNARE-Independent Release of GABA and Glutamate Prior to Synapse Formation, Neuron, vol.36, issue.6, pp.1051-1061, 2002.
DOI : 10.1016/S0896-6273(02)01053-X

URL : https://hal.archives-ouvertes.fr/inserm-00484866