D. C. Douek, Changes in thymic function with age and during the treatment of HIV infection, Nature, vol.396, pp.690-695, 1998.

A. L. Gruver, L. L. Hudson, and G. D. Sempowski, Immunosenescence of ageing, The Journal of Pathology, vol.33, issue.2, pp.144-156, 2007.
DOI : 10.1002/path.2104

J. I. Hoffman and S. Kaplan, The incidence of congenital heart disease, Journal of the American College of Cardiology, vol.39, issue.12, pp.1890-1900, 2002.
DOI : 10.1016/S0735-1097(02)01886-7

A. Rubinstein, B. Pelet, and V. Schweizer, Immunological decay in thymectomized infants, Helv. Paediatr. Acta, vol.30, pp.425-433, 1976.

L. Moretta, Imbalances in T cell subpopulations associated with immunodeficiency and autoimmune syndromes, European Journal of Immunology, vol.24, issue.10, pp.696-700, 1977.
DOI : 10.1002/eji.1830071009

W. J. Wells, R. Parkman, E. Smogorzewska, and M. Barr, Neonatal thymectomy: Does it affect immune function?, The Journal of Thoracic and Cardiovascular Surgery, vol.115, issue.5, pp.1041-1046, 1998.
DOI : 10.1016/S0022-5223(98)70403-9

J. H. Eysteinsdottir, The influence of partial or total thymectomy during open heart surgery in infants on the immune function later in life, Clinical and Experimental Immunology, vol.778, issue.2, pp.349-355, 2004.
DOI : 10.1016/S0955-0674(00)00132-0

A. B. Madhok, Levels of Recent Thymic Emigrant Cells Decrease in Children Undergoing Partial Thymectomy during Cardiac Surgery, Clinical and Vaccine Immunology, vol.12, issue.5, pp.563-565, 2005.
DOI : 10.1128/CDLI.12.5.563-565.2005

H. Torfadottir, Evidence for extrathymic T cell maturation after thymectomy in infancy, Clinical and Experimental Immunology, vol.70, issue.3, pp.407-412, 2006.
DOI : 10.1016/S0955-0674(00)00132-0

B. M. Ogle, Effacing of the T Cell Compartment by Cardiac Transplantation in Infancy, The Journal of Immunology, vol.176, issue.3, 2006.
DOI : 10.4049/jimmunol.176.3.1962

M. Prelog, Thymectomy in early childhood: Significant alterations of the CD4+CD45RA+CD62L+ T cell compartment in later life, Clinical Immunology, vol.130, issue.2, pp.123-132, 2009.
DOI : 10.1016/j.clim.2008.08.023

S. Kimmig, Two Subsets of Naive T Helper Cells with Distinct T Cell Receptor Excision Circle Content in Human Adult Peripheral Blood, The Journal of Experimental Medicine, vol.163, issue.6, pp.789-794, 2002.
DOI : 10.1073/pnas.97.16.9203

S. Junge, Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children, European Journal of Immunology, vol.25, issue.11, pp.3270-3280, 2007.
DOI : 10.1002/eji.200636976

V. Appay, R. A. Van-lier, F. Sallusto, and M. Roederer, Phenotype and function of human T lymphocyte subsets: Consensus and issues, Cytometry Part A, vol.13, issue.11, pp.975-983, 2008.
DOI : 10.1002/cyto.a.20643

J. M. Brenchley, Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells, Blood, vol.101, issue.7, pp.2711-2720, 2003.
DOI : 10.1182/blood-2002-07-2103

L. Papagno, Immune Activation and CD8+ T-Cell Differentiation towards Senescence in HIV-1 Infection, PLoS Biology, vol.195, issue.2, p.20, 2004.
DOI : 10.1371/journal.pbio.0020020.t001

V. Appay, D. C. Douek, P. , and D. A. , CD8+ T cell efficacy in vaccination and disease, Nature Medicine, vol.205, issue.6, pp.623-628, 2008.
DOI : 10.1038/nm.f.1774

R. A. Seder, P. A. Darrah, and M. Roederer, T-cell quality in memory and protection: implications for vaccine design, Nature Reviews Immunology, vol.27, issue.4, pp.247-258, 2008.
DOI : 10.1038/nri2274

V. Appay, Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections, Nature Medicine, vol.8, issue.4, pp.379-385, 2002.
DOI : 10.1038/nm0402-379

R. A. Van-lier, I. J. Ten-berge, and L. E. Gamadia, Human CD8+ T-cell differentiation in response to viruses, Nature Reviews Immunology, vol.3, issue.12, pp.931-939, 2003.
DOI : 10.1038/nri1254

J. T. Opferman, B. T. Ober, A. , and P. G. , Linear Differentiation of Cytotoxic Effectors into Memory T Lymphocytes, Science, vol.283, issue.5408, pp.1745-1748, 1999.
DOI : 10.1126/science.283.5408.1745

H. Hu, CD4(+) T cell effectors can become memory cells with high efficiency and without further division, Nature Immunology, vol.190, issue.8, pp.705-710, 2001.
DOI : 10.1038/90643

D. Homann, L. Teyton, and M. B. Oldstone, Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory, Nature Medicine, vol.7, issue.8, pp.913-919, 2001.
DOI : 10.1038/90950

K. E. Foulds, Cutting Edge: CD4 and CD8 T Cells Are Intrinsically Different in Their Proliferative Responses, The Journal of Immunology, vol.168, issue.4, pp.1528-1532, 2002.
DOI : 10.4049/jimmunol.168.4.1528

N. Hayashi, D. Liu, B. Min, S. Z. Ben-sasson, P. et al., Antigen challenge leads to in vivo activation and elimination of highly polarized TH1 memory T cells, Proceedings of the National Academy of Sciences, vol.99, issue.9, pp.6187-6191, 2002.
DOI : 10.1073/pnas.092129899

V. P. Badovinac, B. B. Porter, and J. T. Harty, Programmed contraction of CD8+ T cells after infection, Nature Immunology, vol.3, pp.619-626, 2002.
DOI : 10.1038/ni804

C. Y. Wu, Distinct lineages of TH1 cells have differential capacities for memory cell generation in vivo, Nature Immunology, vol.3, issue.9, pp.852-858, 2002.
DOI : 10.1038/ni832

E. L. Tham and M. F. Mescher, The Poststimulation Program of CD4 Versus CD8 T Cells (Death Versus Activation-Induced Nonresponsiveness), The Journal of Immunology, vol.169, issue.4, 2002.
DOI : 10.4049/jimmunol.169.4.1822

C. Ferreira, Differential Survival of Naive CD4 and CD8 T Cells, The Journal of Immunology, vol.165, issue.7, pp.3689-3694, 2000.
DOI : 10.4049/jimmunol.165.7.3689

T. W. Kuijpers, Frequencies of Circulating Cytolytic, CD45RA+CD27-, CD8+ T Lymphocytes Depend on Infection with CMV, The Journal of Immunology, vol.170, issue.8, pp.4342-4348, 2003.
DOI : 10.4049/jimmunol.170.8.4342

A. W. Sylwester, T cells dominate the memory compartments of exposed subjects, The Journal of Experimental Medicine, vol.70, issue.5, pp.673-685, 2005.
DOI : 10.1182/blood-2003-06-1937

A. Izcue, J. L. Coombes, and F. Powrie, Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation, Immunological Reviews, vol.174, issue.1, pp.256-271, 2006.
DOI : 10.1084/jem.20051100

F. G. Ferguson, A. Wikby, P. Maxson, J. Olsson, and B. Johansson, Immune Parameters in a Longitudinal Study of a Very Old Population of Swedish People: A Comparison Between Survivors and Nonsurvivors, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.50, issue.6, pp.378-382, 1995.
DOI : 10.1093/gerona/50A.6.B378

A. Wikby, P. Maxson, J. Olsson, B. Johansson, F. et al., Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study, Mechanisms of Ageing and Development, vol.102, issue.2-3, pp.187-198, 1998.
DOI : 10.1016/S0047-6374(97)00151-6

M. Prelog, Diminished response to tick-borne encephalitis vaccination in thymectomized children, Vaccine, vol.26, issue.5, pp.595-600, 2008.
DOI : 10.1016/j.vaccine.2007.11.074

K. Naylor, The Influence of Age on T Cell Generation and TCR Diversity, The Journal of Immunology, vol.174, issue.11, pp.7446-7452, 2005.
DOI : 10.4049/jimmunol.174.11.7446

V. Vezys, Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection, The Journal of Experimental Medicine, vol.105, issue.10, pp.2263-2269, 2006.
DOI : 10.4049/jimmunol.172.8.4875

E. J. Yager, Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus, The Journal of Experimental Medicine, vol.69, issue.3, pp.711-723, 2008.
DOI : 10.1073/pnas.90.9.4319

J. Nikolich-zugich, M. K. Slifka, and I. Messaoudi, The many important facets of T-cell repertoire diversity, Nature Reviews Immunology, vol.14, issue.2, pp.123-132, 2004.
DOI : 10.1126/science.286.5446.1913

L. Gruta, N. L. Driel, I. R. Gleeson, and P. A. , Peripheral T cell expansion in lymphopenic mice results in a restricted T cell repertoire, European Journal of Immunology, vol.178, issue.12, pp.3380-3386, 2000.
DOI : 10.1002/1521-4141(2000012)30:12<3380::AID-IMMU3380>3.0.CO;2-P

N. E. Miller, J. R. Bonczyk, Y. Nakayama, and M. Suresh, Role of Thymic Output in Regulating CD8 T-Cell Homeostasis during Acute and Chronic Viral Infection, Journal of Virology, vol.79, issue.15, pp.9419-9429, 2005.
DOI : 10.1128/JVI.79.15.9419-9429.2005

C. Bourgeois, Z. Hao, K. Rajewsky, A. J. Potocnik, and B. Stockinger, Ablation of thymic export causes accelerated decay of naive CD4 T cells in the periphery because of activation by environmental antigen, Proceedings of the National Academy of Sciences, vol.105, issue.25, pp.8691-8696, 2008.
DOI : 10.1073/pnas.0803732105

U. Karrer, Memory Inflation: Continuous Accumulation of Antiviral CD8+ T Cells Over Time, The Journal of Immunology, vol.170, issue.4, pp.2022-2029, 2003.
DOI : 10.4049/jimmunol.170.4.2022

R. Holtappels, M. F. Pahl-seibert, D. Thomas, R. , and M. J. , Enrichment of Immediate-Early 1 (m123/pp89) Peptide-Specific CD8 T Cells in a Pulmonary CD62Llo Memory-Effector Cell Pool during Latent Murine Cytomegalovirus Infection of the Lungs, Journal of Virology, vol.74, issue.24, pp.11495-11503, 2000.
DOI : 10.1128/JVI.74.24.11495-11503.2000

C. M. Snyder, Memory Inflation during Chronic Viral Infection Is Maintained by Continuous Production of Short-Lived, Functional T Cells, Immunity, vol.29, issue.4, pp.650-659, 2008.
DOI : 10.1016/j.immuni.2008.07.017

G. Pawelec, S. Koch, C. Franceschi, and A. Wikby, Human Immunosenescence: Does It Have an Infectious Component?, Annals of the New York Academy of Sciences, vol.141, issue.1, pp.56-65, 2006.
DOI : 10.1182/blood-2002-02-0657

S. Koch, R. Solana, D. Rosa, O. Pawelec, and G. , Human cytomegalovirus infection and T cell immunosenescence: A mini review, Mechanisms of Ageing and Development, vol.127, issue.6, pp.538-543, 2006.
DOI : 10.1016/j.mad.2006.01.011

A. Webster, Cytomegalovirus (CMV) infection, CD4+ lymphocyte counts and the development of AIDS in HIV-1-infected haemophiliac patients, Clinical & Experimental Immunology, vol.143, issue.SI, pp.6-9, 1992.
DOI : 10.1111/j.1365-2249.1992.tb03030.x

K. S. Schluns, W. C. Kieper, S. C. Jameson, and L. Lefrancois, Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo, Nature Immunology, vol.1, issue.5, pp.426-432, 2000.
DOI : 10.1038/80868

J. T. Tan, IL-7 is critical for homeostatic proliferation and survival of naive T cells, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.8732-8737, 2001.
DOI : 10.1073/pnas.161126098

C. Sportes, Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets, The Journal of Experimental Medicine, vol.153, issue.7, pp.1701-1714, 2008.
DOI : 10.1016/0198-8859(96)00076-6

Y. Levy, Enhanced T cell recovery in HIV-1???infected adults through IL-7 treatment, Journal of Clinical Investigation, 2009.
DOI : 10.1172/JCI38052

URL : https://hal.archives-ouvertes.fr/inserm-00484803

I. Sereti, IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection, Blood, vol.113, issue.25, pp.6304-6314, 2009.
DOI : 10.1182/blood-2008-10-186601

J. D. Altman, Phenotypic Analysis of Antigen-Specific T Lymphocytes, Science, vol.274, issue.5284, pp.182194-96, 1996.
DOI : 10.1126/science.274.5284.94

V. Appay, R. , and S. L. , The assessment of antigen-specific CD8+ T cells through the combination of MHC class I tetramer and intracellular staining, Journal of Immunological Methods, vol.268, issue.1, pp.9-19, 2002.
DOI : 10.1016/S0022-1759(02)00195-3

S. Coito, Retrovirus-Mediated Gene Transfer in Human Primary T Lymphocytes Induces an Activation- and Transduction/Selection-Dependent TCR-B Variable Chain Repertoire Skewing of Gene-Modified Cells, Stem Cells and Development, vol.13, issue.1, pp.71-81, 2004.
DOI : 10.1089/154732804773099272

B. Arden, S. P. Clark, D. Kabelitz, and T. W. Mak, Human T-cell receptor variable gene segment families, Immunogenetics, vol.42, issue.6, pp.455-500, 1995.
DOI : 10.1007/BF00172176