M. Penttonen, Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo, European Journal of Neuroscience, vol.5, issue.2, 1998.
DOI : 10.1038/373612a0

G. Buzsaki, Theta Oscillations in the Hippocampus, Neuron, vol.33, issue.3, pp.325-340, 2002.
DOI : 10.1016/S0896-6273(02)00586-X

F. Pouille and M. Scanziani, Routing of spike series by dynamic circuits in the hippocampus, Nature, vol.90, issue.1, pp.717-723, 2004.
DOI : 10.1016/S0165-0173(97)00061-1

T. Klausberger, Corrigendum: Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo, Nature Neuroscience, vol.7, issue.7, pp.41-47, 2004.
DOI : 10.1038/nn0706-979a

R. Cossart, Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy, Nat. Neurosci, vol.4, pp.52-62, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00484880

A. I. Gulyas, Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum, European Journal of Neuroscience, vol.441, issue.9, pp.1861-1872, 2003.
DOI : 10.1046/j.1460-9568.2003.02630.x

F. Wendling, Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition, European Journal of Neuroscience, vol.38, issue.9, pp.1499-1508, 2002.
DOI : 10.1007/s004220050191

R. D. Traub, Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo., The Journal of Physiology, vol.493, issue.2, pp.471-484, 1996.
DOI : 10.1113/jphysiol.1996.sp021397

X. J. Wang and G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model, 1996.

M. Isokawa, Decrement of GABA A receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus, J. Neurophysiol, vol.75, 1901.

M. D. Shumate, GABAA receptor function in epileptic human dentate granule cells: comparison to epileptic and control rat, Epilepsy Research, vol.32, issue.1-2, pp.114-128, 1998.
DOI : 10.1016/S0920-1211(98)00045-X

F. Loup, Selective alterations in GABA A receptor subtypes in human temporal lobe epilepsy, J. Neurosci, vol.20, pp.5401-5419, 2000.

M. J. Koepp, Cerebral benzodiazepine receptors in hippocampal sclerosis, Brain, vol.119, issue.5, pp.1677-1687, 1996.
DOI : 10.1093/brain/119.5.1677

V. Bouilleret, Early loss of interneurons and delayed subunit-specific changes in GABAA-receptor expression in a mouse model of mesial temporal lobe epilepsy, Hippocampus, vol.74, issue.3, pp.305-324, 2000.
DOI : 10.1002/1098-1063(2000)10:3<305::AID-HIPO11>3.0.CO;2-I

J. M. Fritschy, GABAergic neurons and GABAA-receptors in temporal lobe epilepsy, Neurochemistry International, vol.34, issue.5, pp.435-445, 1999.
DOI : 10.1016/S0197-0186(99)00040-6

J. W. Gibbs, Differential epilepsy-associated alterations in postsynaptic GABA A receptor function in dentate granule cells and CA1 neurons, J. Neurophysiol, vol.77, 1924.

C. Schwarzer, GABAA receptor subunits in the rat hippocampus II: Altered distribution in kainic acid-induced temporal lobe epilepsy, Neuroscience, vol.80, issue.4, pp.1001-1017, 1997.
DOI : 10.1016/S0306-4522(97)00145-0

Z. Nusser, Increased number of synaptic GABA A receptors underlies potentiation at hippocampal inhibitory synapses, Nature, vol.395, issue.6698, pp.172-177, 1998.
DOI : 10.1038/25999

A. R. Brooks-kayal, Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy, Nature Medicine, vol.70, issue.10, pp.1166-1172, 1998.
DOI : 10.1016/0306-4522(95)00348-M

E. Buhl, Zinc-Induced Collapse of Augmented Inhibition by GABA in a Temporal Lobe Epilepsy Model, Science, vol.271, issue.5247, pp.369-373, 1996.
DOI : 10.1126/science.271.5247.369

I. Mody, Distinguishing between GABA A receptors responsible for tonic and phasic conductances, Neurochemical Research, vol.26, issue.8/9, pp.907-913, 2001.
DOI : 10.1023/A:1012376215967

A. Semyanov, Tonically active GABAA receptors: modulating gain and maintaining the tone, Trends in Neurosciences, vol.27, issue.5, pp.262-269, 2004.
DOI : 10.1016/j.tins.2004.03.005

D. C. Mcintyre, Divergent GABA A receptor-mediated synaptic transmission in genetically seizure-prone and seizureresistant rats, J. Neurosci, vol.22, pp.9922-9931, 2002.

M. O. Poulter, Differential expression of a1, a2, a3, and a5 GABA A receptor subunits in seizure-prone and seizure-resistant rat models of temporal lobe epilepsy, J. Neurosci, vol.19, pp.4654-4661, 1999.

E. Palma, Phosphatase inhibitors remove the run-down of ??-aminobutyric acid type A receptors in the human epileptic brain, Proceedings of the National Academy of Sciences, vol.101, issue.27, pp.10183-10188, 2004.
DOI : 10.1073/pnas.0403683101

Y. Ari, Lability of synaptic inhibition of hippocampal pyramidal cells The K C /Cl K co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, J. Physiol. Nature, vol.298, issue.397, pp.36-37, 1980.

Y. Ben-ari and M. Gho, Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid., The Journal of Physiology, vol.404, issue.1, pp.365-384, 1988.
DOI : 10.1113/jphysiol.1988.sp017294

P. S. Buckmaster and A. L. Jongen-relo, Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats, J. Neurosci, vol.19, pp.9519-9529, 1999.

N. Delanerolle, Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy, Brain Research, vol.495, issue.2, pp.387-395, 1989.
DOI : 10.1016/0006-8993(89)90234-5

C. Dinocourt, Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures, The Journal of Comparative Neurology, vol.459, issue.4, pp.407-425, 2003.
DOI : 10.1002/cne.10622

URL : https://hal.archives-ouvertes.fr/inserm-00484796

M. Kobayashi and P. S. Buckmaster, Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy, J. Neurosci, vol.23, pp.2440-2452, 2003.

L. Wittner, Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus, Neuroscience, vol.108, issue.4, pp.587-600, 2001.
DOI : 10.1016/S0306-4522(01)00446-8

R. S. Sloviter, ?Dormant basket cell? hypothesis revisited: Relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat, The Journal of Comparative Neurology, vol.22, issue.1, pp.44-76, 2003.
DOI : 10.1002/cne.10630

J. Defelipe, Chandelier cells and epilepsy, Brain, vol.122, issue.10, pp.1807-1822, 1999.
DOI : 10.1093/brain/122.10.1807

U. Sayin, Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats, J. Neurosci, vol.23, pp.2759-2768, 2003.

E. A. Vliet, Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation, Experimental Neurology, vol.187, issue.2, pp.367-379, 2004.
DOI : 10.1016/j.expneurol.2004.01.016

N. C. Lanerolle, Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy, Brain Research, vol.495, issue.2, pp.387-395, 1989.
DOI : 10.1016/0006-8993(89)90234-5

J. I. Arellano, Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus, Brain, vol.127, issue.1, pp.45-64, 2004.
DOI : 10.1093/brain/awh004

J. M. Blasco-ibanez and T. F. Freund, Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed-back Activation, European Journal of Neuroscience, vol.5, issue.Suppl. 5, pp.2170-2180, 1995.
DOI : 10.1111/j.1460-9568.1995.tb00638.x

R. Cossart, Quantal Release of Glutamate Generates Pure Kainate and Mixed AMPA/Kainate EPSCs in Hippocampal Neurons, Neuron, vol.35, issue.1, pp.147-159, 2002.
DOI : 10.1016/S0896-6273(02)00753-5

URL : https://hal.archives-ouvertes.fr/inserm-00484870

J. H. Goldberg, Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics, The Journal of Physiology, vol.551, issue.1, pp.67-78, 2003.
DOI : 10.1113/jphysiol.2003.042598

J. C. Hirsch, Deficit of quantal release of GABA in experimental temporal lobe epilepsy, Nat. Neurosci, vol.2, pp.499-500, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00486214

T. S. Otis, Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents., Proceedings of the National Academy of Sciences, vol.91, issue.16, pp.7698-7702, 1994.
DOI : 10.1073/pnas.91.16.7698

K. Chen, Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits, Nat. Med, vol.5, pp.888-894, 1999.

C. P. Hammond, Cellular and Molecular Neurobiology Integration of quanta in cerebellar granule cells during sensory processing, Nature, vol.428, pp.856-860, 2001.

P. S. Buckmaster and F. E. Dudek, Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate???treated rats, The Journal of Comparative Neurology, vol.385, issue.3, pp.385-404, 1997.
DOI : 10.1002/(SICI)1096-9861(19970901)385:3<385::AID-CNE4>3.3.CO;2-Y

C. Bernard, Interneurones are not so dormant in temporal lobe epilepsy: a critical reappraisal of the dormant basket cell hypothesis, Epilepsy Research, vol.32, issue.1-2, pp.93-103, 1998.
DOI : 10.1016/S0920-1211(98)00043-6

URL : https://hal.archives-ouvertes.fr/inserm-00487318

R. S. Sloviter, Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The ?dormant basket cell? hypothesis and its possible relevance to temporal lobe epilepsy, Hippocampus, vol.15, issue.1, pp.41-66, 1991.
DOI : 10.1002/hipo.450010106

M. Esclapez, Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy, Proceedings of the National Academy of Sciences, vol.94, issue.22, pp.12151-12156, 1997.
DOI : 10.1073/pnas.94.22.12151

B. D. Harvey and R. Sloviter, Dentate granule cell quiescence and inhibitory interneuron activation during spontaneous seizures in awake, chronically epileptic, pilocarpine-treated Abstract Viewer and Itinerary Planner, Program 303 Interneurons in area CA1 stratum radiatum and stratum oriens remain functionally connected to excitatory synaptic input in chronically epileptic animals, Society for Neuroscience Online 83, pp.1504-1515, 1997.

E. E. Jobst, P. J. Enriori, and A. Michael, Cowley Trends in Endocrinology and Metabolism DOI: 10