M. Lombes, The mineralocorticoid receptor: insights into its molecular and 490 (patho)physiological biology, Nucl Recept Signal, vol.5, pp.12-491, 2007.

W. Meyer, N. Nichols, M. Oblin, J. Gasc, E. Baulieu et al., Mineralocorticoid binding in cultured smooth 493 muscle cells and fibroblasts from rat aorta 496 Immunohistochemical and biochemical evidence for a cardiovascular 497 mineralocorticoid receptor, J Steroid Biochem Circ Res, vol.1471, issue.494, pp.1157-1168503, 1981.

N. Nichols, C. Hall, and W. Meyer, Aldosterone binding sites in aortic cell cultures from spontaneously hypertensive rats, Hypertension, vol.4, issue.5, pp.646-651, 1982.
DOI : 10.1161/01.HYP.4.5.646

A. Rickard, J. Morgan, G. Tesch, J. Funder, P. Fuller et al., Deletion of Mineralocorticoid Receptors From Macrophages Protects Against Deoxycorticosterone/Salt-Induced Cardiac Fibrosis and Increased Blood Pressure, Hypertension, vol.54, issue.3, pp.537-543, 2009.
DOI : 10.1161/HYPERTENSIONAHA.109.131110

B. Pitt, F. Zannad, W. Remme, R. Cody, A. Castaigne et al., The effect 512 of spironolactone on morbidity and mortality in patients with severe heart failure, p.513

J. Funder, P. Pearce, R. Smith, and A. Smith, Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated, Science, vol.242, issue.4878, pp.583-585, 1988.
DOI : 10.1126/science.2845584

T. Yoshimoto and Y. Hirata, Aldosterone as a cardiovascular risk hormone. Endocr 524, J, vol.54, issue.525, pp.359-370, 2007.

S. Berger, M. Bleich, W. Schmid, T. Cole, J. Peters et al., 531 Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism, Proc, vol.532

M. Bleich, R. Warth, M. Schmidt-hieber, A. Schulz-baldes, and P. Hasselblatt, Fisch 535 D et al. Rescue of the mineralocorticoid receptor knock-out mouse, Pflugers Arch, vol.536438, pp.245-254, 1999.

C. Hubert, J. Gasc, S. Berger, G. Schutz, and P. Corvol, Effects of Mineralocorticoid Receptor Gene Disruption on the Components of the Renin-Angiotensin System in 8-Day-Old Mice, Molecular Endocrinology, vol.13, issue.2, pp.297-306, 1999.
DOI : 10.1210/mend.13.2.0241

A. Cat, Conditional mineralocorticoid receptor expression in the heart leads to 548 life-threatening arrhythmias Aldosterone-induced 551 inflammation in the rat heart : role of oxidative stress, Circulation Am J Pathol, vol.111161, issue.553, pp.3025-30331773, 2002.

N. Lalevee, M. Rebsamen, S. Barrere-lemaire, E. Perrier, J. Nargeot et al., Aldosterone increases T-type calcium channel expression and in vitro 556 beating frequency in neonatal rat cardiomyocytes 557 558 19 Role of the T-type 559 calcium channel CaV3.2 in the chronotropic action of corticosteroids in isolated rat 560 ventricular myocytes Embryonic stem cells: prospects for developmental 567 biology and cell therapy, AM. 563 Differentiation of pluripotent embryonic stem cells into cardiomyocytes, pp.216-2243726, 2002.

P. Gu, D. Lemenuet, A. Chung, M. Mancini, D. Wheeler et al., Orphan Nuclear Receptor GCNF Is Required for the Repression of Pluripotency Genes during Retinoic Acid-Induced Embryonic Stem Cell Differentiation, Molecular and Cellular Biology, vol.25, issue.19, pp.8507-572, 2005.
DOI : 10.1128/MCB.25.19.8507-8519.2005

N. Gutton, Osmotic Stress Regulates Mineralocorticoid Receptor Expression in a 580

L. Menuet, D. Zennaro, M. Viengchareun, S. Lombes, and M. , Transgenic mouse 584 models to study human mineralocorticoid receptor function in vivo, Kidney Int, vol.58557, issue.586, pp.1299-1306, 2000.

E. Kawase, H. Suemori, N. Takahashi, K. Okazaki, K. Hashimoto et al., 588 Strain difference in establishment of mouse embryonic stem (ES) cell lines, Int J Dev Biol, vol.58938, issue.590, pp.385-390, 1994.

N. Chandler, I. Greener, J. Tellez, S. Inada, H. Musa et al., Molecular Architecture of the Human Sinus Node: Insights Into the Function of the Cardiac Pacemaker, Circulation, vol.119, issue.12, pp.1562-1575, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.804369

M. Baruscotti, A. Barbuti, and A. Bucchi, The cardiac pacemaker current, Journal of Molecular and Cellular Cardiology, vol.48, issue.1, pp.598-627, 2009.
DOI : 10.1016/j.yjmcc.2009.06.019

D. Difrancesco, Funny channels in the control of cardiac rhythm and mode of action of selective blockers, Pharmacological Research, vol.53, issue.5, pp.399-406, 2006.
DOI : 10.1016/j.phrs.2006.03.006

V. Maltsev, A. Wobus, J. Rohwedel, M. Bader, J. Hescheler et al., Cardiomyocytes 602 differentiated in vitro from embryonic stem cells developmentally express cardiac- 603 specific genes and ionic currents Glucocorticoids activate 606 cardiac mineralocorticoid receptors during experimental myocardial infarction, Circ Res Hypertension, vol.7554, issue.609, pp.233-244, 1994.

T. Muto, N. Ueda, T. Opthof, T. Ohkusa, K. Nagata et al., Aldosterone modulates If current through gene expression in cultured neonatal rat ventricular myocytes, AJP: Heart and Circulatory Physiology, vol.293, issue.5, pp.2710-2718, 2007.
DOI : 10.1152/ajpheart.01399.2006

E. Perrier, B. Kerfant, N. Lalevee, P. Bideaux, M. Rossier et al., Mineralocorticoid Receptor Antagonism Prevents the Electrical Remodeling That Precedes Cellular Hypertrophy After Myocardial Infarction, Circulation, vol.110, issue.7, pp.776-616, 2004.
DOI : 10.1161/01.CIR.0000138973.55605.38

URL : https://hal.archives-ouvertes.fr/hal-00311197

S. Shibata, M. Nagase, S. Yoshida, W. Kawarazaki, H. Kurihara et al., Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease, Nature Medicine, vol.58, issue.12, pp.1370-1376, 2008.
DOI : 10.1038/nm.1879

A. Barbuti, A. Crespi, D. Capilupo, N. Mazzocchi, M. Baruscotti et al., Molecular composition and functional properties of f-channels in murine embryonic stem cell-derived pacemaker cells, Journal of Molecular and Cellular Cardiology, vol.46, issue.3, pp.343-351, 2009.
DOI : 10.1016/j.yjmcc.2008.12.001

S. Herrmann, J. Stieber, G. Stockl, F. Hofmann, and A. Ludwig, HCN4 provides a 632 'depolarization reserve' and is not required for heart rate acceleration in mice. EMBO 633, J, vol.26, issue.635, pp.4423-4432, 2007.

P. Schweizer, P. Yampolsky, R. Malik, D. Thomas, J. Zehelein et al., Transcription profiling of HCN-channel isotypes throughout mouse cardiac development, Basic Research in Cardiology, vol.98, issue.3, pp.621-629, 2009.
DOI : 10.1007/s00395-009-0031-5

M. Biel, C. Wahl-schott, S. Michalakis, and X. Zong, Hyperpolarization-Activated Cation Channels: From Genes to Function, Physiological Reviews, vol.89, issue.3, pp.847-885, 2009.
DOI : 10.1152/physrev.00029.2008

D. Harzheim, K. Pfeiffer, L. Fabritz, E. Kremmer, T. Buch et al., 643 Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic 644 development and requires cyclic AMP Mineralocorticoid modulation of cardiac ryanodine receptor activity is associated with 648 downregulation of FK506-binding proteins, EMBO J Circulation, vol.27119, issue.649, pp.692-703, 2008.

L. Boldt, R. S. Huemer, M. Parwani, A. Luft, F. Dietz et al., Optimal heart failure therapy and successful cardioversion in heart failure patients with atrial fibrillation, American Heart Journal, vol.155, issue.5, pp.890-895, 2008.
DOI : 10.1016/j.ahj.2007.12.015