M. T. Bedford, C. , and S. G. , Protein Arginine Methylation in Mammals: Who, What, and Why, Molecular Cell, vol.33, issue.1, pp.1-13, 2009.
DOI : 10.1016/j.molcel.2008.12.013

M. T. Bedford, R. , and S. , Arginine Methylation, Molecular Cell, vol.18, issue.3, pp.263-272, 2005.
DOI : 10.1016/j.molcel.2005.04.003

URL : http://doi.org/10.1016/j.molcel.2005.04.003

J. M. Aletta, J. C. Hu, and B. Malley, Protein arginine methylation in health and disease. 417 The Year in Basic Science: nuclear receptors and coregulators, Biotechnol Annu Rev, vol.14, 2008.

J. Wysocka, Histone arginine methylation and its dynamic regulation, Frontiers in Bioscience, vol.11, issue.1, pp.344-355, 2006.
DOI : 10.2741/1802

S. S. Koh, Synergistic Enhancement of Nuclear Receptor Function by p160 Coactivators and Two Coactivators with Protein Methyltransferase Activities, Journal of Biological Chemistry, vol.276, issue.2, pp.1089-1098, 2001.
DOI : 10.1074/jbc.M004228200

D. Chen, Regulation of Transcription by a Protein Methyltransferase, Science, vol.284, issue.5423, pp.2174-2177, 1999.
DOI : 10.1126/science.284.5423.2174

L. Romancer and M. , Regulation of Estrogen Rapid Signaling through Arginine Methylation by PRMT1, Molecular Cell, vol.31, issue.2, pp.212-221, 2008.
DOI : 10.1016/j.molcel.2008.05.025

T. Lahusen, The role and regulation of the nuclear receptor co-activator AIB1 in breast cancer, Breast Cancer Research and Treatment, vol.29, issue.2, pp.225-237, 2009.
DOI : 10.1007/s10549-009-0405-2

M. Harigopal, Estrogen receptor co-activator (AIB1) protein expression by automated quantitative analysis (AQUA) in a breast cancer tissue microarray and association with patient outcome, Breast Cancer Research and Treatment, vol.23, issue.8, pp.77-85, 2009.
DOI : 10.1007/s10549-008-0063-9

M. I. Torres-arzayus, High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene, Cancer Cell, vol.6, issue.3, pp.263-274, 2004.
DOI : 10.1016/j.ccr.2004.06.027

S. Q. Kuang, AIB1/SRC-3 Deficiency Affects Insulin-Like Growth Factor I Signaling Pathway and Suppresses v-Ha-ras-induced Breast Cancer Initiation and Progression in Mice, Cancer Research, vol.64, issue.5, pp.1875-1885, 2004.
DOI : 10.1158/0008-5472.CAN-03-3745

Q. Feng, Signaling within a coactivator complex: methylation of, 2006.

H. Naeem, The Activity and Stability of the Transcriptional Coactivator p/CIP/SRC-3 Are Regulated by CARM1-Dependent Methylation, Molecular and Cellular Biology, vol.27, issue.1, pp.120-134, 2007.
DOI : 10.1128/MCB.00815-06

Y. H. Lee, Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination, Proceedings of the National Academy of Sciences, vol.102, issue.10, pp.3611-472, 2005.
DOI : 10.1073/pnas.0407159102

C. Teyssier, Activation of nuclear receptor coactivator PGC-1?? by arginine methylation, Genes & Development, vol.19, issue.12, pp.1466-1473, 2005.
DOI : 10.1101/gad.1295005

M. Huq and M. D. , Suppression of receptor interacting protein 140 476 repressive activity by protein arginine methylation, Embo J, vol.25, pp.5094-5104, 2006.

T. Kouzarides, Chromatin Modifications and Their Function, Cell, vol.128, issue.4, pp.693-705, 2007.
DOI : 10.1016/j.cell.2007.02.005

URL : http://doi.org/10.1016/j.cell.2007.02.005

S. D. Taverna, How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers, Nature Structural & Molecular Biology, vol.14, issue.11, pp.1025-1040, 2007.
DOI : 10.1126/science.1145801

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691843

O. Malley and B. W. , Cracking the coregulator codes, Curr Opin Cell Biol, vol.20, issue.481, pp.310-315, 2008.

M. Huq and M. D. , Post-translational modifications of nuclear co- 483 repressor RIP140: a therapeutic target for metabolic diseases, Curr Med Chem, vol.15, pp.386-392, 2008.

M. D. Huq, Lysine Methylation of Nuclear Co-Repressor Receptor Interacting Protein 140, Journal of Proteome Research, vol.8, issue.3, pp.1156-1167, 2009.
DOI : 10.1021/pr800569c

P. Gupta, PKC?? Stimulated Arginine Methylation of RIP140 for Its Nuclear-Cytoplasmic Export in Adipocyte Differentiation, PLoS ONE, vol.288, issue.7, pp.2658-488, 2002.
DOI : 10.1371/journal.pone.0002658.s003

W. J. Lin, The mammalian immediate-early TIS21 protein and the 491 leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase, p.492, 1996.

J. P. Rouault, Interaction of BTG1 and p53-regulatedBTG2 Gene Products with mCaf1, the Murine Homolog of a Component of the Yeast CCR4 Transcriptional Regulatory Complex, Journal of Biological Chemistry, vol.273, issue.35, pp.22563-22569, 1998.
DOI : 10.1074/jbc.273.35.22563

Y. Robin-lespinasse, hCAF1, a new regulator of PRMT1-dependent arginine methylation, Journal of Cell Science, vol.120, issue.4, pp.638-647, 2007.
DOI : 10.1242/jcs.03357

H. Wang, Methylation of Histone H4 at Arginine 3 Facilitating Transcriptional Activation by Nuclear Hormone Receptor, Science, vol.293, issue.5531, pp.853-857, 2001.
DOI : 10.1126/science.1060781

S. Huang, Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications, Genes & Development, vol.19, issue.16, pp.1885-502, 2005.
DOI : 10.1101/gad.1333905

D. Prevot, Relationships of the Antiproliferative Proteins BTG1 and BTG2 with CAF1, the Human Homolog of a Component of the Yeast CCR4 Transcriptional Complex, Journal of Biological Chemistry, vol.276, issue.13, pp.9640-9648, 2001.
DOI : 10.1074/jbc.M008201200

W. Xu, A methylation-mediator complex in hormone signaling, Genes & Development, vol.18, issue.2, pp.144-156, 2004.
DOI : 10.1101/gad.1141704

K. Higashimoto, Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1, Proceedings of the National Academy of Sciences, vol.104, issue.30, pp.12318-12323, 2007.
DOI : 10.1073/pnas.0610792104

Q. Feng, Biochemical control of CARM1 enzymatic activity by 511 phosphorylation, J Biol Chem, vol.512, 2009.

S. Frietze, CARM1 Regulates Estrogen-Stimulated Breast Cancer Growth through Up-regulation of E2F1, Cancer Research, vol.68, issue.1, pp.301-306, 2008.
DOI : 10.1158/0008-5472.CAN-07-1983

M. R. Pawlak, Arginine N-methyltransferase 1 is required for early 515 postimplantation mouse development, but cells deficient in the enzyme are viable, Mol Cell Biol, vol.516, issue.20, pp.4859-4869, 2000.

N. Yadav, Specific protein methylation defects and gene expression 518 perturbations in coactivator-associated arginine methyltransferase 1-deficient mice, Proc Natl, p.519, 2003.

L. D. Miller, An expression signature for p53 status in human breast cancer 521 predicts mutation status, transcriptional effects, and patient survival Gene expression profiling predicts clinical outcome of 524 breast cancer, Proc Natl Acad Sci Nature, vol.102, issue.415, pp.530-536, 2002.

A. L. Richardson, X chromosomal abnormalities in basal-like human breast cancer, Cancer Cell, vol.9, issue.2, pp.121-132, 2006.
DOI : 10.1016/j.ccr.2006.01.013

G. Finak, Stromal gene expression predicts clinical outcome in breast cancer, Nature Medicine, vol.25, issue.5, pp.518-527, 2008.
DOI : 10.1038/nm1764

A. V. Ivshina, Genetic Reclassification of Histologic Grade Delineates New Clinical Subtypes of Breast Cancer, Cancer Research, vol.66, issue.21, pp.10292-10301, 2006.
DOI : 10.1158/0008-5472.CAN-05-4414

N. D. Hendrix, Fibroblast growth factor 9 has oncogenic activity and is a 532 downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas, Cancer Res, vol.533, pp.66-1354, 2006.

I. Goulet, Alternative splicing yields protein arginine methyltransferase 1, 2007.
DOI : 10.1074/jbc.m704349200

X. Chang and J. Han, Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors, Molecular Carcinogenesis, vol.264, issue.3, pp.183-196, 2006.
DOI : 10.1002/mc.20169

X. Chang, Increased PADI4 expression in blood and tissues of patients with malignant tumors, BMC Cancer, vol.17, issue.29, p.40, 2009.
DOI : 10.1007/s002920050181

S. Dong, ) Expression in MCF-7 Cells Is Mediated by Estrogen Receptor-??-Promoted Transfactors Activator Protein-1, Nuclear Factor-Y, and Sp1, Molecular Endocrinology, vol.21, issue.7, pp.1617-1629, 2007.
DOI : 10.1210/me.2006-0550

E. Messaoudi and S. , Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene, Proceedings of the National Academy of Sciences, vol.103, issue.36, pp.13351-13356, 2006.
DOI : 10.1073/pnas.0605692103

URL : https://hal.archives-ouvertes.fr/hal-00169734

E. Tokunaga, The association between Akt activation and resistance to hormone therapy in metastatic breast cancer, European Journal of Cancer, vol.42, issue.5, pp.629-635, 2006.
DOI : 10.1016/j.ejca.2005.11.025

A. Spannhoff, Cancer treatment of the future: Inhibitors of histone methyltransferases, The International Journal of Biochemistry & Cell Biology, vol.41, issue.1, pp.4-11, 2009.
DOI : 10.1016/j.biocel.2008.07.024

Y. H. Lee and M. R. Stallcup, Minireview: Protein Arginine Methylation of Nonhistone Proteins in Transcriptional Regulation, Molecular Endocrinology, vol.23, issue.4, pp.425-433, 2009.
DOI : 10.1210/me.2008-0380

C. D. Krause, Protein arginine methyltransferases: Evolution and assessment of their pharmacological and therapeutic potential, Pharmacology & Therapeutics, vol.113, issue.1, pp.50-87, 2007.
DOI : 10.1016/j.pharmthera.2006.06.007

R. Metivier, Estrogen Receptor-?? Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter, Cell, vol.115, issue.6, pp.751-763, 2003.
DOI : 10.1016/S0092-8674(03)00934-6

G. L. Cuthbert, Histone Deimination Antagonizes Arginine Methylation, Cell, vol.118, issue.5, pp.118-545, 2004.
DOI : 10.1016/j.cell.2004.08.020

URL : http://doi.org/10.1016/j.cell.2004.08.020

Y. Wang, Human PAD4 Regulates Histone Arginine Methylation Levels via Demethylimination, Science, vol.306, issue.5694, pp.279-283, 2004.
DOI : 10.1126/science.1101400

Y. Hidaka, Methylation of the guanidino group of arginine residues prevents citrullination by peptidylarginine deiminase IV, FEBS Letters, vol.44, issue.19, pp.4088-4092, 2005.
DOI : 10.1016/j.febslet.2005.06.035

R. Raijmakers, Methylation of Arginine Residues Interferes with Citrullination by Peptidylarginine Deiminases in vitro, Journal of Molecular Biology, vol.367, issue.4, pp.1118-1129, 2007.
DOI : 10.1016/j.jmb.2007.01.054

B. Chang, JMJD6 Is a Histone Arginine Demethylase, Science, vol.318, issue.5849, pp.444-447, 2007.
DOI : 10.1126/science.1145801

C. J. Webby, Jmjd6 Catalyses Lysyl-Hydroxylation of U2AF65, a Protein Associated with RNA Splicing, Science, vol.325, issue.5936, pp.90-93, 2009.
DOI : 10.1126/science.1175865

J. Kim, Tudor, MBT and chromo domains gauge the degree of lysine 569 methylation, EMBO Rep, vol.7, pp.397-403, 2006.

J. Cote, R. , and S. , Tudor Domains Bind Symmetrical Dimethylated Arginines, Journal of Biological Chemistry, vol.280, issue.31, pp.28476-28483, 2005.
DOI : 10.1074/jbc.M414328200

D. Cheng, The Arginine Methyltransferase CARM1 Regulates the Coupling of Transcription and mRNA Processing, Molecular Cell, vol.25, issue.1, pp.71-83, 2007.
DOI : 10.1016/j.molcel.2006.11.019

U. M. Bauer, Methylation at arginine 17 of histone H3 is linked to gene activation, EMBO Reports, vol.3, issue.1, pp.39-44, 2002.
DOI : 10.1093/embo-reports/kvf013

L. H. Saal, Poor prognosis in carcinoma is associated with a gene 577 expression signature of aberrant PTEN tumor suppressor pathway activity, Proc Natl Acad, vol.578, 2007.

J. R. Cook, FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues, Biochemical and Biophysical Research Communications, vol.342, issue.2, pp.472-481, 2006.
DOI : 10.1016/j.bbrc.2006.01.167

N. Troffer-charlier, Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains, The EMBO Journal, vol.19, issue.20, pp.4391-4401, 2007.
DOI : 10.1038/sj.emboj.7601855

URL : https://hal.archives-ouvertes.fr/hal-00188373

C. Teyssier, Requirement for Multiple Domains of the Protein Arginine Methyltransferase CARM1 in Its Transcriptional Coactivator Function, Journal of Biological Chemistry, vol.277, issue.48, pp.46066-46072, 2002.
DOI : 10.1074/jbc.M207623200