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M. Altuve, Sudent Member, IEEE, G. Carrau, .. Cruz, A. Beuchée, I Plady;, A. Hernande

Abstract— This work presents an analysis of the informatiorcontent of new features derived from the electroegdiogram (ECG)
for the characterization of apnea-bradycardia everd in preterm infants. Automatic beat detection andsegmentation methods have
been adapted to the ECG signals from preterm infarst, through the application of two evolutionary algoithms. ECG data acquired
from 32 preterm infants with persistent apnea-bradgardia have been used for quantitative evaluatioriThe adaptation procedure
led to an improved sensitivity and positive predidte value, and a reduced jitter for the detection bthe R-wave, QRS onset,QRS
offset, and iso-electric level. Additionally, timeseries representing theRR interval, R-wave amplitude and QRS duration, were
automatically extracted for periods at rest, before during and after apnea-bradycardia episodes. Sidficant variations (p<0.05)
were observed for all time-series when comparing thdifference between values at rest versus valuassf before the bradycardia
event, with the difference between values at resevsus values during the bradycardia event. These salts reveal changes in th&-
wave amplitude and QRS duration, appearing at the onset and termination 6 apnea-bradycardia episodes, which could be
potentially useful for the early detection and chaacterization of these episodes.

|I. INTRODUCTION

APNEA—BRADYCARDIA episodes are often observed in preterm infants.r@petition of these episodes has been associated
with a poor neuromotor prognosis at 3 years [1] Aad been identified as a predisposing factor tiden-death
syndrome in newborns [2]. Furthermore, these egisaektend the hospitalization periods and occalijorequire tele-
monitoring at home. Therefore, in neonatal intemsbare units, preterm infants undergo continuousli@espiratory
monitoring to detect apnea-bradycardia episodes tanihitiate quick nursing actions. Manual stimigat is the most
common way to stop apnea-bradycardia episodeseirenon newborns, however, the intervention delaysmesd from the
activation of the monitoring alarm to the applioatiof the therapy remains long [3].

The cardiac cycle lengttRR interval) extracted from the electrocardiogram (BG&generally used to detect apnea-
bradycardia episodes. However, other parametenaatetl from the ECG, likdR-wave amplitude and@RS complex
duration, could be also integrated in a new detactipproach. Therefore, in this paper, three tieres RR, R-wave
amplitude andQRS complex duration) were studied for periods at,resfore, during and after apnea-bradycardia episod
To extract these series from the ECGQRS detector algorithm [4] followed by an ECG segméntamethod [5] were
applied. However, these methods were conceivedheranalysis of adult ECG and should be adaptetheospecific
characteristics of the newborn's ECG. Evolutioredgprithms (EA) were chosen to realize these ingursteps.

Il. METHODS

A. Apnea-bradycardia ECG database

Data were obtained from 32 premature infants, wiesgnted more than one bradycardia per hour attd#areed for bag-
and-mask resuscitation. At the moment of the réngrdhe median birth weight was 1235 g, the medigawas 31.2 weeks
and the postnatal age was 12.1 days. Recordings aeguired using the PowerLab®/Chart v4.2® systethcansisted of a
1-hour recording at a 400-Hz sampling rate of omed| ECG [6]. Bradycardia events were detected ambtated by
analyzing theRR interval. A bradycardia episode was definedRRs= 600 ms during 4 s or more [7]. Two database sabset
were constructed:
= DBL1: 50 ECG segments defined from 5 minutes beforé#ggnning of a bradycardia until 2 minutes aftex €nd and

containing only one bradycardia event during thisole period. Only 27 patients presented at least episode as
described above. InB1 51655R-waves positions have been annotated.
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= DB2: 93 ECG segments randomly chosen from the enttabadse, but different from@B1, with at least one ECG
segment per patienDB2 is characterized by normal heart rate (HR) andobg or more bradycardia episodes per
segment. IMDB2 the position of th&-wave, QRSon, QRSoff and the iso-electric level have been annotatddié® beats.

B. Beat detection process

In the QRS detection algorithm [4], the ECG signal is proegsbdy a cascade of low-pass and high-pass filteroff
frequenciedc, o, andfcyign), followed by a double differentiator filter, amalitude squaring process and a moving-window
integrator of widthTyy. The final step is based on adaptive thresholdiéctware continually adjusted by a set of heuristic
rules, to track the changes on the ECG signal. €gbdo [4], a bufferT,y) to collect the time history of the signal and the
peak values of the transformed signal obtained dfte moving-window integrator, and one set of shadds referred to
these peak values were used. The adaptive threfhoR) is found by using

THR = BPeak ,, + d(aPeak ,, — fPeak ,,) (1)
wherePeaky, is the average of tHdP most relevant peaks determined by using
NP
Peak ,, :Aiz Peak ; (2)
NP &

andd a, B, and) are constants. Peaks greater thHR are considered as@RS complex. The algorithm applies a refractory
period Trer) and a search window ¢ in the band-pass filtered signal for fiducial io{FP) detection. If aQQRSis not
found duringTrrim, the parameters are reset and a QR detection process begins from the I@&S correctly detected.
Table | summarizes the parameters of the beat tbetiecbe optimized.

C. Automatic QRS segmentation process

In the wavelet transform (WT) segmentation mettgjddgach detected beat is extracted from the EGdalimited into a
small temporal support around tQRS complex. Beat templates are created by the averiaile most recent beats, detected
in a time history of 10 seconds. Only beats presgrd normalized cross-correlation higher than @B6used to update the
beat template. The updated template is decompaséitle scales with an octave filter bank withoutideation. Several
search windows are used to find waves boundarigsTg andTg, to identify theR-wave, Tgim to find theQ-wave, andlgin
for Swave. By using (3), temporal parameters can badas a scaled versiom) of theRR interval, fori /7R1, R2, Qlim,
Sim.

T, =mRR 3

Two thresholds forspre aNdyorspos) @re used to find significant slopes of P&ndS waves £orsont (OF Eorson- ) @NAEoRsf+
(or &oraoir.) are thresholds used to fi@RS onset QRSon) and offset QRSoff). As proposed in [8], the iso-electric level
position (SOp) is determined as the flattest waveform of Siggfound on the time-window ofpsg seconds preceding tie
wave.Tpg andT, can also be represented as a function oRBReterval by using (3).

D. Parameter optimization based on EA

The parameters of the beat detection and WT segti@mtmethods have been adapted to the procesEiEG® signals
acquired from preterm infants. This problem canvieved as the minimization of a cost function definbetween the
observation of the events (wave annotations) aedallgorithm output (wave detection). Evolutionatgosithms (EA),
optimization methods inspired from natural selettioave shown to be well adapted to solve this kifhichultidimensional
problems [9]. A similar optimization problem of @sal processing chain, presenting in detail thigngipation methodology,
has recently been published by our laboratory Tayo independent EA were sequentially appli&#l optimizes the
parameters of the beat detector &#&2 optimizes the parameters of tRRS segmentation method. Such a partitioning is
possible because tlgRS segmentation will be optimal only if the beat d¢be is previously optimized. The cost function
(C) to be minimized by each EA is given by:

|
C=) (uDJ, +oDJ, + Perr,) (4)
i=1
fori O FP, R-wave,QRSon, QRSoff, ISOp. It combines three criteri@) mean detection jittegDJ) computed as the average
of the jitter between the annotation and the diteatver all ECG segments) standard deviation of the detection jitter
(oDJ) determined as the average of the standard dewiafithe detection jitter of each segment oveE&@IG segments; and
iii) error detection probabilityPerr) calculated by using:

Perr, =/@L-S ) + (L- PPV, )’ (5)
whereS = sensitivity,PPV = positive predictive valué,d FP, R-wave,QRSon, QRSoff, I1Op.
To create the initial population f@&Al, parameters to be optimized were increased ancased from [4], whereas for
EA2, scaled parameters defining the different tempsuglports were defined from possible extreme mstand durations
of each wave and scaled parameters related tchthidsswere increased and decreased from [5]. Rgrdetection method,




simple, arithmetic and heuristic crossover, andtiaman-uniform and non-uniform mutation were usé{l Both EA were
applied for 80 generations with 200 individualsthwa probability of crossover of 0.7 and a probgbibf mutation being
high during the first generations and low at thd EO].

A performance comparison before and after paranogtémization was made, by evaluating the sengjtithe PPV, the
#DJ and theoDJ on the test sets.

E. QRScomplex analysis

Series ofRR, R-wave amplitudeRay,) andQRS duration QRS,,) were determined and analyzed for each ECG segment
from DB1. Four intervals were used for analyzing each seifid1: from 5 minutes before the bradycardia until theoselc
minute, containing the HR in rest (without any pebpttion related to an apnea-bradycardia evah{j2: from minute 3 to 5,
without bradycardia but the apnea episode hasdrbagun; we would like to find some relevant imfiation that arrives
just before the bradycardia eveiit) T3: during the bradycardia event (apnea and bradiz@pisodes are present); dnj
T4: from the end of the bradycardia and with a doratf 2 minutes, where, generally, the HR retumist rest valueRay,
time-series were normalized by dividing by the tgtvalue found in intervall. The weighted meamf) and the weighted
standard deviatiofwo) were computed for each interval for all time seriefThe average of the absolute difference of the
mean [/AD) between values on interval (considered as reference) and the other intervatsaalculated for all segments

as follows:
X

Z ‘,UTS (X)Tl - I'ITS (X)Ti ‘
HMAD )y =2 X (6)

whereTS O RR, Ramp, QRS i 0 2, 3, 4; X are the available ECG segmeni@S(X); is the mean of'S computed for each
segmentx of each intervalli. The average of the absolute difference of thadstad deviation 4AD) was estimated in a
similar fashion.

Mann-Whitney U statistical hypothesis tests wasduseanalyze the variations between intervals, whep-value of
p<0.05 is considered significant.

. RESULTS

Results are presented in tree paitsonditions for the application of the E4) the performance of the beat detection and
WT segmentation methods, aiiid the QRS complex analysis for apnea-bradycardia characteéoiz.

A. Evolutionary Algorithm

Two learning setsLS1 andLS2) and two test set3 €1 andTS2) were constructed to carry out the optimization:

= LSl used forEAL1 and composed of 2500 beats (50 beats per segwistaiped fromDBL1, where the first 25 ECG
segments, extracted from the first part of each BE@nent, do not present any bradycardia episodeanRR interval
of 400.89+ 13.02 ms), whereas the other 25 ECG segmentsmresselycardia episodes (mel8R interval of 584.3&
161.79 ms).

= L2 used forEA2 and composed of 2256 beats from 47 ECG segmeninetd fromDB2. In this set, 34 ECG
segments (1632 beats) present a hormal RiRifterval of 402.3% 6.06 ms), the other 13 ECG segments (624 beats)
contain bradycardia episodd®Rinterval of 534.02 115.14 ms).

= TSI used to test the optimal parameters foundEfst and composed of the entibB1.

= T2 used to test the optimal parameters foundEHAR and composed of 2207 beats from the rest of th&@6
segments obtained froBB2. This set presents a normal HRR(interval 404.1% 8.34 ms).

SeveralQRS morphologies are present in these datasets.

B. Beat detection and WT segmentation performance

Parameters of the beat detector, before and dféepptimization methodology, by usifitpl on LS, are presented in
Table I. Compared to those used in adults by [dlinoal parameters show an increase in the cutefuencies of the low-
pass and high-pass filters that obviously are edl&b the fact that th@RS of preterm infants are generally thinner and have
higher frequency content than tQRS of adults. Also, it is observed a decrease irsthe of the window for moving-average
integration that can also be explained by the hidrezuency content of the newbor@&S. These parameters have been
used to evaluate the performance of @RS detection method ofSL.

Optimal parameters related to temporal search wisdof the WT segmentation process, by udif® on L2, are:
Mg1=0.1211,mMg,=0.099,Mgi=0.1003,mgjn=0.1170,mp=0.1192,m,=0.0149. An example of the optimal parameters,gusin
a typical RR interval of 400 ms is illustrated in Table Il. Araparison between our approach and [5], [6] is shdtvis
clearly observed a reduction of all the search wimslin our approach. These parameters have beehtaisaluate the
performance of th@®RS segmentation method on th&2.



Table 11l shows sensitivity, PP\DJ and dDJ of the beat detector and the WT segmentation ndethefore and after the
optimization process. Sensitivity and PPV were ioleté by using a 10 ms search window. The Table sreowimprovement
in the detection of th€@RSon, QRSoff and Isop, and in the detection of tHeP exceptingoDJ. Performance results are
comparable to those reported in the literaturediggistandard adult's ECG databases [4], [5].

C. QRScomplex analysis

Table IV shows thevy, wo, 4AD and gAD for all time seriefRR, normalizedRay, (NRamp), andQRSy,,. Results folRR
andQRS,,, show the highest values f@B (bradycardia event), followet2, and the lowest values fai. The lowest value
of thewu for NRaqy, is obtained foif3 (as well as the highest value for the). A diminution is observed in theu from T1
to T3 as well as an increase in ther from T1 to T3. For all the time series, higher values of D and thegAD are
obtained betweeml andT3.

Significant differences between intervald and T3 were observed for th&R time series [{<0.0001). Additionally,
significant variations were observed for all tinerxias when comparin@l-T2 vs. T1-T3 (p<0.0005) andr1-T3 vs. T1-T4
(p<0.05). Time serieRR, normalizedRan, QRSpy, and an ECG segment wi@RS segmentation are illustrated in figure 1.
Changes in th&wave amplitude are clearly observed in figure l(glated to the bradycardia episode shown irRRé&me
series in figure 1(a).

IV. CONCLUSION

This paper presents the adaptation of a beat detaod a WT segmentation method, to the pretermboews ECG.
Optimal parameters found by using evolutionary gthms have improved the performance of both method

By analyzing theRR, R-wave amplitude, an@RS complex duration from 50 ECG segments from 27egunetinfants, it
was observed a statistical significant modificatiorthe amplitude of th&wave and in the duration of tgRS complex,
associated with the onset of the apnea-bradycamisodes. These findings show the potential bewéfd multivariate
approach to early apnea-bradycardia detection harchcterization.
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TABLE |
PARAMETERS OF THE BEAT DETECTION METHOD AND ITS VALES
BEFORE AND AFTER THE OPTIMIZATION PROCESS

Parameter Before After Units
fCLow 15 18.567 Hz
fChign 5 7.6288 Hz
Tvw 150 55.2419 ms
Taurr 5000 4453.9285 ms
NP 5 12 Peaks
A 0.2 0.2708
o 0.8 0.6711
B 0.2 0.3108
J 0.31 0.3659
Trer 200 256.7595 ms
Theak 20 45.8864 ms

Trrim 1500 1811.2468 ms




TABLE Il

SEARCH WINDOWS AND THRESHOLDS FOR RRINTERVAL OF 400Ms,
AND THE PARAMETERS USED BYDUMONT ET AL., SMRDEL AND JAGER

Parameter  Our approach Dumont et al. Swrde, and Jager

Tre 48.44 ms 118 ms

Tre 39.6 ms 111 ms

Talim 40.12 ms 88 ms

Tsim 46.8 ms 154 ms

YoRspre 0.1241 0.09

YQRspost 0.0909 0.11

Sarson+ 0.0486 0.07

Eorson- 0.0800 0.07

SQRrsof+ 0.1635 0.21

CQrsot- 0.6995 0.23

Teg 47.68 ms 108 ms

Tiso 5.96 ms 20 ms
TABLE Il

BEAT DETECTION ANDQRSSEGMENTATION PERFORMANCEBEFORE
AND AFTER THE OPTIMIZATION PROCESS

Criteria FP Rwave QRSon QRSoff 1SOp
S (%) Bef. 88.12 98.46 40.33 77.07 0
Aft.  97.23 98.46 90.21 80.24 80.61
PPV (%) Bef. 88.38 98.46 40.33 77.07 0
Aft.  97.95 98.46 90.21 80.24 80.61
uDJ(ms) Bef. 4.29 1.39 43.48 7.81 48.88
Aft.  2.18 1.69 3.07 4.49 4.29
oDJ (ms) Bef. 12.61 1.44 11.61 5.64 2.61
Aft  14.68 0.66 1.27 2.64 2.29
TABLE IV
W, Wa, (/AD AND 0AD FOR TIME SERIESRR, NRaye, AND QRS =
Criteria RR (ms) NRamp QRS (M9)
(WeetEWo) 11 407.9:14.60 0.82380.060 61.035.88
(wrEwOo) T2 414.5828.43 0.818#0.063 61.586.22
(W EWO) 13 712.0%#147.9 0.815%0.075 66.3%15.06
(WLEWO) 14 413.8%19.72  0.82930.066 61.437.08
(HAD£OAD)11.12 11.26:15.31 0.04420.019 2.0210.17
(HAD£OAD) 1113 285.06123.2 0.096£0.038 2.5%1.66
(HAD£OAD) 1174 13.938.76 0.058%0.023  9.382.17
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Fig. 1. (a)RR, (b) QRS duration, (c) NormalizedR-wave amplitude
and (d) typicalQRS complex segmentation results. In (a)-(c), the
vertical dashed lines delimit the intervdls-T4, whereas in (d), the
vertical dashed lines show the autom&RS segmentation@RSon,
R-wave, andQRoff)
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