C. De-wit, S. E. Wolfle, and B. Hopfl, Connexin-Dependent Communication within the Vascular Wall: Contribution to the Control of Arteriolar Diameter, Advances in cardiology, vol.42, pp.268-283, 2006.
DOI : 10.1159/000092575

P. J. Newman, The biology of PECAM-1., Journal of Clinical Investigation, vol.99, issue.1, pp.3-8, 1997.
DOI : 10.1172/JCI119129

K. Hirata, T. Ishida, K. Penta, M. Rezaee, E. Yang et al., Cloning of an Immunoglobulin Family Adhesion Molecule Selectively Expressed by Endothelial Cells, Journal of Biological Chemistry, vol.276, issue.19, pp.16223-16231, 2001.
DOI : 10.1074/jbc.M100630200

I. Nasdala, K. Wolburg-buchholz, H. Wolburg, A. Kuhn, K. Ebnet et al., A Transmembrane Tight Junction Protein Selectively Expressed on Endothelial Cells and Platelets, Journal of Biological Chemistry, vol.277, issue.18, pp.16294-16303, 2002.
DOI : 10.1074/jbc.M111999200

W. A. Muller, Leukocyte???endothelial-cell interactions in leukocyte transmigration and the inflammatory response, Trends in Immunology, vol.24, issue.6, pp.327-334, 2003.
DOI : 10.1016/S1471-4906(03)00117-0

N. Bardin, F. Anfosso, J. M. Masse, E. Cramer, F. Sabatier et al., Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion, Blood, vol.98, issue.13, pp.3677-3684, 2001.
DOI : 10.1182/blood.V98.13.3677

C. Rampon, M. H. Prandini, S. Bouillot, H. Pointu, E. Tillet et al., Protocadherin 12 (VE-cadherin 2) is expressed in endothelial, trophoblast, and mesangial cells, Experimental Cell Research, vol.302, issue.1, pp.48-60, 2005.
DOI : 10.1016/j.yexcr.2004.08.024

URL : https://hal.archives-ouvertes.fr/inserm-00433181

M. G. Lampugnani, M. Corada, L. Caveda, F. Breviario, O. Ayalon et al., The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha- catenin with vascular endothelial cadherin (VE-cadherin), The Journal of Cell Biology, vol.129, issue.1, pp.203-217, 1995.
DOI : 10.1083/jcb.129.1.203

P. Panorchan, J. P. George, and D. Wirtz, Probing Intercellular Interactions between Vascular Endothelial Cadherin Pairs at Single-molecule Resolution and in Living Cells, Journal of Molecular Biology, vol.358, issue.3, pp.665-674, 2006.
DOI : 10.1016/j.jmb.2006.02.021

P. Legrand, S. Bibert, M. Jaquinod, C. Ebel, E. Hewat et al., Self-assembly of the Vascular Endothelial Cadherin Ectodomain in a Ca2+-dependent Hexameric Structure, Journal of Biological Chemistry, vol.276, issue.5, pp.3581-3588, 2001.
DOI : 10.1074/jbc.M002667200

S. Bibert, M. Jaquinod, E. Concord, C. Ebel, E. Hewat et al., Synergy between Extracellular Modules of Vascular Endothelial Cadherin Promotes Homotypic Hexameric Interactions, Journal of Biological Chemistry, vol.277, issue.15, pp.12790-12801, 2002.
DOI : 10.1074/jbc.M111597200

E. A. Hewat, C. Durmort, L. Jacquamet, E. Concord, and D. Gulino-debrac, Architecture of the VE-cadherin Hexamer, Journal of Molecular Biology, vol.365, issue.3, pp.744-751, 2007.
DOI : 10.1016/j.jmb.2006.10.052

URL : https://hal.archives-ouvertes.fr/inserm-00433355

G. Bazzoni and E. Dejana, Endothelial Cell-to-Cell Junctions: Molecular Organization and Role in Vascular Homeostasis, Physiological Reviews, vol.84, issue.3, pp.869-901, 2004.
DOI : 10.1152/physrev.00035.2003

S. Yamada, S. Pokutta, F. Drees, W. I. Weis, and W. J. Nelson, Deconstructing the Cadherin-Catenin-Actin Complex, Cell, vol.123, issue.5, pp.889-901, 2005.
DOI : 10.1016/j.cell.2005.09.020

S. Iden, D. Rehder, B. August, A. Suzuki, K. Wolburg-buchholz et al., A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells, EMBO reports, vol.42, issue.12, pp.1239-1246, 2006.
DOI : 10.1016/S0960-9822(03)00244-6

H. Delanoe-ayari, R. Kurdi, M. Vallade, D. Gulino-debrac, and D. Riveline, Membrane and acto-myosin tension promote clustering of adhesion proteins, Proceedings of the National Academy of Sciences, vol.101, issue.8, pp.2229-2234, 2004.
DOI : 10.1073/pnas.0304297101

O. Lambert, J. C. Taveau, J. L. Him, R. Kurdi, D. Gulino-debrac et al., The Basic Framework of VE-cadherin Junctions Revealed by Cryo-EM, Journal of Molecular Biology, vol.346, issue.5, pp.1193-1196, 2005.
DOI : 10.1016/j.jmb.2004.12.053

Y. Zhou, S. J. Fisher, M. Janatpour, O. Genbacev, E. Dejana et al., Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion?, Journal of Clinical Investigation, vol.99, issue.9, pp.2139-2151, 1997.
DOI : 10.1172/JCI119387

M. J. Hendrix, E. A. Seftor, P. S. Meltzer, L. M. Gardner, A. R. Hess et al., Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry, Proceedings of the National Academy of Sciences, vol.98, issue.14, pp.98-8018, 2001.
DOI : 10.1073/pnas.131209798

M. Peichev, A. J. Naiyer, D. Pereira, Z. Zhu, W. J. Lane et al., Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors, Blood, vol.95, pp.952-958, 2000.

C. D. Cohen, A. Klingenhoff, A. Boucherot, A. Nitsche, A. Henger et al., Comparative promoter analysis allows de novo identification of specialized cell junction-associated proteins, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.5682-5687, 2006.
DOI : 10.1073/pnas.0511257103

P. Huber, J. Dalmon, J. Engiles, F. Breviario, S. Gory et al., Genomic Structure and Chromosomal Mapping of the Mouse VE-Cadherin Gene (Cdh5), Genomic structure and chromosomal mapping of the mouse VE-cadherin gene (Cdh5), pp.21-28, 1996.
DOI : 10.1006/geno.1996.0072

S. Gory, J. Dalmon, M. H. Prandini, T. Kortulewski, Y. De-launoit et al., Requirement of a GT Box (Sp1 Site) and Two Ets Binding Sites for Vascular Endothelial Cadherin Gene Transcription, Journal of Biological Chemistry, vol.273, issue.12, pp.6750-6755, 1998.
DOI : 10.1074/jbc.273.12.6750

E. Lelievre, V. Mattot, P. Huber, B. Vandenbunder, and F. , ETS1 lowers capillary endothelial cell density at confluence and induces the expression of VE-cadherin, Oncogene, vol.19, issue.20, pp.2438-2446, 2000.
DOI : 10.1038/sj.onc.1203563

V. Deleuze, E. Chalhoub, R. El-hajj, C. Dohet, M. L. Clech et al., TAL-1/SCL and Its Partners E47 and LMO2 Up-Regulate VE-Cadherin Expression in Endothelial Cells, Molecular and Cellular Biology, vol.27, issue.7, pp.2687-2697, 2007.
DOI : 10.1128/MCB.00493-06

M. H. Prandini, I. Dreher, S. Bouillot, S. Benkerri, T. Moll et al., The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis, Oncogene, vol.2, issue.18, pp.2992-3001, 2005.
DOI : 10.1038/sj.onc.1208483

URL : https://hal.archives-ouvertes.fr/inserm-00433166

S. Gory-fauré, M. H. Prandini, H. Pointu, V. Roullot, I. Pignot-paintrand et al., Role of vascular endothelial-cadherin in vascular morphogenesis, Development, vol.126, pp.2093-2102, 1999.

P. Carmeliet, M. G. Lampugnani, L. Moons, F. Breviario, V. Compernolle et al., Targeted Deficiency or Cytosolic Truncation of the VE-cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis, Cell, vol.98, issue.2, pp.147-157, 1999.
DOI : 10.1016/S0092-8674(00)81010-7

M. Corada, L. Zanetta, F. Orsenigo, F. Breviario, M. G. Lampugnani et al., A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability, Blood, vol.100, issue.3, pp.905-911, 2002.
DOI : 10.1182/blood.V100.3.905

F. Liao, J. F. Doody, J. Overholser, B. Finnerty, R. Bassi et al., Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability, Cancer Res, pp.62-2567, 2002.

C. May, J. F. Doody, R. Abdullah, P. Balderes, X. Xu et al., Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature, Blood, vol.105, issue.11, pp.4337-4344, 2005.
DOI : 10.1182/blood-2005-01-0010

D. Salomon, O. Ayalon, R. Patel-king, R. O. Hynes, and B. Geiger, Extrajunctional distribution of N-cadherin in cultured human endothelial cells, J Cell Sci, vol.102, pp.7-17, 1992.

D. Ivanov, M. Philippova, J. Antropova, F. Gubaeva, O. Iljinskaya et al., Expression of cell adhesion molecule Tcadherin in the human vasculature, Histochemistry and cell biology, vol.115, pp.231-242, 2001.

P. Telo, F. Breviario, P. Huber, C. Panzeri, and E. Dejana, Identification of a Novel Cadherin (Vascular Endothelial Cadherin-2) Located at Intercellular Junctions in Endothelial Cells, Journal of Biological Chemistry, vol.273, issue.28, pp.17565-17572, 1998.
DOI : 10.1074/jbc.273.28.17565

H. Gerhardt, H. Wolburg, and C. Redies, N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken, Developmental Dynamics, vol.219, issue.3, pp.472-479, 2000.
DOI : 10.1002/1097-0177(200007)218:3<472::AID-DVDY1008>3.0.CO;2-#

E. Tillet, D. Vittet, O. Feraud, R. Moore, R. Kemler et al., N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis, Experimental Cell Research, vol.310, issue.2, pp.310-392, 2005.
DOI : 10.1016/j.yexcr.2005.08.021

D. Ivanov, M. Philippova, R. Allenspach, P. Erne, and T. Resink, T-cadherin upregulation correlates with cell-cycle progression and promotes proliferation of vascular cells, Cardiovascular Research, vol.64, issue.1, pp.132-143, 2004.
DOI : 10.1016/j.cardiores.2004.06.010

D. Ivanov, M. Philippova, V. Tkachuk, P. Erne, and T. Resink, Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility, Experimental Cell Research, vol.293, issue.2, pp.207-218, 2004.
DOI : 10.1016/j.yexcr.2003.09.030

M. B. Joshi, M. Philippova, D. Ivanov, R. Allenspach, P. Erne et al., T-cadherin protects endothelial cells from oxidative stress-induced apoptosis, The FASEB Journal, pp.19-1737, 2005.
DOI : 10.1096/fj.05-3834fje

M. Philippova, D. Ivanov, V. Tkachuk, P. Erne, and T. J. Resink, Polarisation of T-cadherin to the leading edge of migrating vascular cells in vitro: a function in vascular cell motility?, Histochemistry and Cell Biology, vol.120, issue.5, pp.353-360, 2003.
DOI : 10.1007/s00418-003-0584-6

A. M. Goodwin and P. A. , Wnt signaling in the vasculature, Angiogenesis, vol.5, issue.1/2, pp.1-9, 2002.
DOI : 10.1023/A:1021563510866

C. G. Eberhart and P. Argani, Wnt Signaling in Human Development: Beta-Catenin Nuclear Translocation in Fetal Lung, Kidney, Placenta, Capillaries, Adrenal, and Cartilage, Pediatric and Developmental Pathology, vol.4, issue.4, pp.351-357, 2001.
DOI : 10.1007/s10024001-0037-y

C. G. Eberhart, T. Tihan, and P. C. Burger, Nuclear Localization and Mutation of ??-Catenin in Medulloblastomas, Journal of Neuropathology & Experimental Neurology, vol.59, issue.4, pp.333-337, 2000.
DOI : 10.1093/jnen/59.4.333

W. M. Blankesteijn, M. E. Van-gijn, Y. P. Essers-janssen, M. J. Daemen, and J. F. Smits, ??-Catenin, an Inducer of Uncontrolled Cell Proliferation and Migration in Malignancies, Is Localized in the Cytoplasm of Vascular Endothelium during Neovascularization after Myocardial Infarction, The American Journal of Pathology, vol.157, issue.3, pp.877-883, 2000.
DOI : 10.1016/S0002-9440(10)64601-9

S. Liebner, A. Cattelino, R. Gallini, N. Rudini, M. Iurlaro et al., ??-Catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse, The Journal of Cell Biology, vol.113, issue.3, pp.359-367, 2004.
DOI : 10.1182/blood-2002-06-1877

A. Cattelino, S. Liebner, R. Gallini, A. Zanetti, G. Balconi et al., The conditional inactivation of the ??-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility, The Journal of Cell Biology, vol.113, issue.6, pp.1111-1122, 2003.
DOI : 10.1006/bbrc.1999.1344

M. Corada, F. Liao, M. Lindgren, M. G. Lampugnani, F. Breviario et al., Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability, Blood, vol.97, issue.6, pp.1679-1684, 2001.
DOI : 10.1182/blood.V97.6.1679

M. Corada, M. Mariotti, G. Thurston, K. Smith, M. Kunkel et al., Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo, Proceedings of the National Academy of Sciences, vol.96, issue.17, pp.96-9815, 1999.
DOI : 10.1073/pnas.96.17.9815

U. Gotsch, E. Borges, R. Bosse, E. Boggemeyer, M. Simon et al., VE-cadherin antibody accelerates neutrophil recruitment in vivo, J Cell Sci, vol.110, pp.583-588, 1997.

J. R. Allport, W. A. Muller, and F. W. Luscinskas, Monocytes Induce Reversible Focal Changes in Vascular Endothelial Cadherin Complex during Transendothelial Migration under Flow, The Journal of Cell Biology, vol.161, issue.1, pp.203-216, 2000.
DOI : 10.1161/01.CIR.90.4.1899

S. K. Shaw, P. S. Bamba, B. N. Perkins, and F. W. Luscinskas, Real-Time Imaging of Vascular Endothelial-Cadherin During Leukocyte Transmigration Across Endothelium, The Journal of Immunology, vol.167, issue.4, pp.2323-2330, 2001.
DOI : 10.4049/jimmunol.167.4.2323

W. H. Su, H. I. Chen, and C. J. Jen, Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium, Blood, vol.100, issue.10, pp.3597-3603, 2002.
DOI : 10.1182/blood-2002-01-0303

U. Eriksson and K. , Alitalo, Structure, expression and receptor-binding properties of novel vascular endothelial growth factors, Current topics in microbiology and immunology, pp.41-57, 1999.

S. Esser, M. G. Lampugnani, M. Corada, E. Dejana, and W. Risau, Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells, J Cell Sci, vol.111, pp.1853-1865, 1998.

S. Weis, S. Shintani, A. Weber, R. Kirchmair, M. Wood et al., Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction, Journal of Clinical Investigation, vol.113, issue.6, pp.885-894, 2004.
DOI : 10.1172/JCI200420702

N. Lambeng, Y. Wallez, C. Rampon, F. Cand, G. Christe et al., Vascular Endothelial-Cadherin Tyrosine Phosphorylation in Angiogenic and Quiescent Adult Tissues, Circulation Research, vol.96, issue.3, pp.96-384, 2005.
DOI : 10.1161/01.RES.0000156652.99586.9f

URL : https://hal.archives-ouvertes.fr/inserm-00433466

M. T. Chou, J. Wang, and D. J. Fujita, Src kinase becomes preferentially associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of vascular endothelial cells, BMC Biochem, vol.3, issue.32, 2002.

Y. Wallez, F. Cand, F. Cruzalegui, C. Wernstedt, S. Souchelnytskyi et al., Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site, Oncogene, vol.174, issue.7, pp.1067-1077, 2007.
DOI : 10.1038/sj.onc.1209855

U. Baumeister, R. Funke, K. Ebnet, H. Vorschmitt, S. Koch et al., Association of Csk to VE-cadherin and inhibition of cell proliferation, The EMBO Journal, vol.22, issue.9, pp.24-1686, 2005.
DOI : 10.1038/sj.emboj.7600647

M. D. Potter, S. Barbero, and D. A. Cheresh, Tyrosine Phosphorylation of VE-cadherin Prevents Binding of p120- and ??-Catenin and Maintains the Cellular Mesenchymal State, Journal of Biological Chemistry, vol.280, issue.36, pp.31906-31912, 2005.
DOI : 10.1074/jbc.M505568200

J. Gavard and J. S. Gutkind, VEGF controls endothelial-cell permeability by promoting the ??-arrestin-dependent endocytosis of VE-cadherin, Nature Cell Biology, vol.280, issue.11, pp.1223-1234, 2006.
DOI : 10.1038/ncb1486

P. Andriopoulou, P. Navarro, A. Zanetti, M. G. Lampugnani, and E. Dejana, Histamine Induces Tyrosine Phosphorylation of Endothelial Cell-to-Cell Adherens Junctions, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.19, issue.10, pp.2286-2297, 1999.
DOI : 10.1161/01.ATV.19.10.2286

D. M. Shasby, D. R. Ries, S. S. Shasby, and M. C. Winter, Histamine stimulates phosphorylation of adherens junction proteins and alters their link to vimentin, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.282, issue.6, pp.1330-1338, 2002.
DOI : 10.1152/ajplung.00329.2001

F. E. Nwariaku, Z. Liu, X. Zhu, R. H. Turnage, G. A. Sarosi et al., Tyrosine phosphorylation of vascular endothelial cadherin and the regulation of microvascular permeability, Surgery, vol.132, issue.2, pp.180-185, 2002.
DOI : 10.1067/msy.2002.125305

D. J. Angelini, S. W. Hyun, D. N. Grigoryev, P. Garg, P. Gong et al., TNF-?? increases tyrosine phosphorylation of vascular endothelial cadherin and opens the paracellular pathway through fyn activation in human lung endothelia, AJP: Lung Cellular and Molecular Physiology, vol.291, issue.6, pp.1232-1245, 2006.
DOI : 10.1152/ajplung.00109.2006

J. H. Tinsley, M. H. Wu, W. Ma, A. C. Taulman, and S. Y. Yuan, Activated Neutrophils Induce Hyperpermeability and Phosphorylation of Adherens Junction Proteins in Coronary Venular Endothelial Cells, Journal of Biological Chemistry, vol.274, issue.35, pp.24930-24934, 1999.
DOI : 10.1074/jbc.274.35.24930

H. Hudry-clergeon, D. Stengel, E. Ninio, and I. Vilgrain, Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3'-kinase, The FASEB Journal, vol.19, issue.6, pp.19-512, 2005.
DOI : 10.1096/fj.04-2202com

URL : https://hal.archives-ouvertes.fr/inserm-00433480

Y. Wang, G. Jin, H. Miao, J. Y. Li, S. Usami et al., Integrins regulate VE-cadherin and catenins: Dependence of this regulation on Src, but not on Ras, Proceedings of the National Academy of Sciences, vol.103, issue.6, pp.1774-1779, 2006.
DOI : 10.1073/pnas.0510774103

M. G. Lampugnani, A. Zanetti, M. Corada, T. Takahashi, G. Balconi et al., Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, ??-catenin, and the phosphatase DEP-1/CD148, The Journal of Cell Biology, vol.11, issue.4, pp.793-804, 2003.
DOI : 10.1161/01.ATV.0000012268.84961.AD

R. Nawroth, G. Poell, A. Ranft, S. Kloep, U. Samulowitz et al., VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts, Embo J, pp.24-3158, 2005.

C. Bianchi, F. W. Sellke, R. L. Vecchio, N. K. Tonks, and B. G. Neel, Receptor-Type Protein-Tyrosine Phosphatase ?? Is Expressed in Specific Vascular Endothelial Bedsin Vivo, Experimental Cell Research, vol.248, issue.1, pp.329-338, 1999.
DOI : 10.1006/excr.1999.4428

X. F. Sui, T. D. Kiser, S. W. Hyun, D. J. Angelini, R. L. Vecchio et al., Receptor Protein Tyrosine Phosphatase ?? Regulates the Paracellular Pathway in Human Lung Microvascular Endothelia, The American Journal of Pathology, vol.166, issue.4, pp.1247-1258, 2005.
DOI : 10.1016/S0002-9440(10)62343-7

J. A. Ukropec, M. K. Hollinger, S. M. Salva, and M. J. Woolkalis, SHP2 Association with VE-Cadherin Complexes in Human Endothelial Cells Is Regulated by Thrombin, Journal of Biological Chemistry, vol.275, issue.8, pp.5983-5986, 2000.
DOI : 10.1074/jbc.275.8.5983

D. Carden, F. Xiao, C. Moak, B. H. Willis, S. Robinson-jackson et al., Neutrophil elastase promotes lung microvascular injury and proteolysis of endothelial cadherins, Am J Physiol, vol.275, pp.385-392, 1998.

B. Hermant, S. Bibert, E. Concord, B. Dublet, M. Weidenhaupt et al., Identification of Proteases Involved in the Proteolysis of Vascular Endothelium Cadherin during Neutrophil Transmigration, Journal of Biological Chemistry, vol.278, issue.16, pp.14002-14012, 2003.
DOI : 10.1074/jbc.M300351200

J. R. Allport, Y. C. Lim, J. M. Shipley, R. M. Senior, S. D. Shapiro et al., Neutrophils from MMP-9-or neutrophil elastasedeficient mice show no defect in transendothelial migration under flow in vitro, Journal of leukocyte biology, pp.71-821, 2002.

B. Herren, B. Levkau, E. W. Raines, and R. Ross, Cleavage of beta -Catenin and Plakoglobin and Shedding of VE-Cadherin during Endothelial Apoptosis: Evidence for a Role for Caspases and Metalloproteinases, Molecular Biology of the Cell, vol.9, issue.6, pp.1589-1601, 1998.
DOI : 10.1091/mbc.9.6.1589

Y. Ichikawa, T. Ishikawa, N. Momiyama, M. Kamiyama, H. Sakurada et al., Matrilysin (MMP-7) degrades VE-cadherin and accelerates accumulation of beta-catenin in the nucleus of human umbilical vein endothelial cells, Oncology Reports, pp.15-311, 2006.
DOI : 10.3892/or.15.2.311

N. Luplertlop, D. Misse, D. Bray, V. Deleuze, J. P. Gonzalez et al., Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction, EMBO reports, vol.7, issue.12, pp.1176-1181, 2006.
DOI : 10.1038/sj.embor.7400868

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794696

D. Navaratna, P. G. Mcguire, G. Menicucci, and A. Das, Proteolytic Degradation of VE-Cadherin Alters the Blood-Retinal Barrier in Diabetes, Diabetes, vol.56, issue.9, 2007.
DOI : 10.2337/db06-1694

W. B. Wu and T. F. Huang, Activation of MMP-2, cleavage of matrix proteins, and adherens junctions during a snake venom metalloproteinase-induced endothelial cell apoptosis, Experimental Cell Research, vol.288, issue.1, pp.143-157, 2003.
DOI : 10.1016/S0014-4827(03)00183-6

K. Xiao, D. F. Allison, K. M. Buckley, M. D. Kottke, P. A. Vincent et al., Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells, The Journal of Cell Biology, vol.276, issue.3, pp.535-545, 2003.
DOI : 10.1083/jcb.141.3.779

K. Xiao, D. F. Allison, M. D. Kottke, S. Summers, G. P. Sorescu et al., Mechanisms of VE-cadherin Processing and Degradation in Microvascular Endothelial Cells, Journal of Biological Chemistry, vol.278, issue.21, pp.19199-19208, 2003.
DOI : 10.1074/jbc.M211746200

S. Iyer, D. M. Ferreri, N. C. Decocco, F. L. Minnear, and P. A. Vincent, VE-cadherin-p120 interaction is required for maintenance of endothelial barrier function, AJP: Lung Cellular and Molecular Physiology, vol.286, issue.6, pp.1143-1153, 2004.
DOI : 10.1152/ajplung.00305.2003

K. Xiao, J. Garner, K. M. Buckley, P. A. Vincent, C. M. Chiasson et al., p120-Catenin Regulates Clathrin-dependent Endocytosis of VE-Cadherin, Molecular Biology of the Cell, vol.16, issue.11, pp.5141-5151, 2005.
DOI : 10.1091/mbc.E05-05-0440

L. Caveda, I. Martin-padura, P. Navarro, F. Breviario, M. Corada et al., Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin)., Journal of Clinical Investigation, vol.98, issue.4, pp.886-893, 1996.
DOI : 10.1172/JCI118870

M. Pierce, C. Wang, M. Stump, and A. Kamb, Overexpression of the ?-catenin binding domain of cadherin selectively kills colorectal cancer cells, International Journal of Cancer, vol.101, issue.2, pp.229-237, 2003.
DOI : 10.1002/ijc.11372

M. G. Lampugnani, F. Orsenigo, M. C. Gagliani, C. Tacchetti, and E. Dejana, Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments, The Journal of Cell Biology, vol.1746, issue.4, pp.593-604, 2006.
DOI : 10.1083/jcb.200107088

A. Zanetti, M. G. Lampugnani, G. Balconi, F. Breviario, M. Corada et al., Vascular Endothelial Growth Factor Induces Shc Association With Vascular Endothelial Cadherin: A Potential Feedback Mechanism to Control Vascular Endothelial Growth Factor Receptor-2 Signaling, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.4, pp.617-622, 2002.
DOI : 10.1161/01.ATV.0000012268.84961.AD

G. Pelicci, L. Lanfrancone, F. Grignani, J. Mcglade, F. Cavallo et al., A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction, Cell, vol.70, issue.1, pp.93-104, 1992.
DOI : 10.1016/0092-8674(92)90536-L

S. C. Harrison, Variation on an Src-like Theme, Cell, vol.112, issue.6, pp.737-740, 2003.
DOI : 10.1016/S0092-8674(03)00196-X

L. J. Duan, A. Imamoto, and G. H. Fong, Dual roles of the C-terminal Src kinase (Csk) during developmental vascularization, Blood, vol.103, issue.4, pp.1370-1372, 2004.
DOI : 10.1182/blood-2003-05-1701

C. M. Nelson and C. S. Chen, VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension, Journal of Cell Science, vol.116, issue.17, pp.3571-3581, 2003.
DOI : 10.1242/jcs.00680

R. Spagnuolo, M. Corada, F. Orsenigo, L. Zanetta, U. Deuschle et al., Gas1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis, Blood, vol.103, issue.8, pp.3005-3012, 2004.
DOI : 10.1182/blood-2003-07-2459

H. J. Schnittler, B. Puschel, and D. Drenckhahn, Role of cadherins and plakoglobin in interendothelial adhesion under resting conditions and shear stress, Am J Physiol, vol.273, pp.2396-2405, 1997.

A. Shay-salit, M. Shushy, E. Wolfovitz, H. Yahav, F. Breviario et al., VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells, Proceedings of the National Academy of Sciences, vol.99, issue.14, pp.99-9462, 2002.
DOI : 10.1073/pnas.142224299

E. Tzima, M. Irani-tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz et al., A mechanosensory complex that mediates the endothelial cell response to fluid shear stress, Nature, vol.11, issue.7057, pp.426-431, 2005.
DOI : 10.1172/JCI200213595

J. Waschke, W. Baumgartner, R. H. Adamson, M. Zeng, K. Aktories et al., Requirement of Rac activity for maintenance of capillary endothelial barrier properties, AJP: Heart and Circulatory Physiology, vol.286, issue.1, pp.394-401, 2004.
DOI : 10.1152/ajpheart.00221.2003

J. Waschke, D. Drenckhahn, R. H. Adamson, and F. E. Curry, Role of adhesion and contraction in Rac 1-regulated endothelial barrier function in vivo and in vitro, AJP: Heart and Circulatory Physiology, vol.287, issue.2, pp.704-711, 2004.
DOI : 10.1152/ajpheart.01076.2003

B. Wojciak-stothard, L. Y. Tsang, and S. G. Haworth, Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells, AJP: Lung Cellular and Molecular Physiology, vol.288, issue.4, pp.749-760, 2005.
DOI : 10.1152/ajplung.00361.2004

Y. Liu and D. R. Senger, Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells, The FASEB Journal, vol.18, issue.3, pp.457-468, 2004.
DOI : 10.1096/fj.03-0948com

J. Seebach, H. J. Madler, B. Wojciak-stothard, and H. J. Schnittler, Tyrosine phosphorylation and the small GTPase rac cross-talk in regulation of endothelial barrier function, Thrombosis and Haemostasis, pp.94-620, 2005.
DOI : 10.1160/TH05-01-0015

S. Van-wetering, J. D. Van-buul, S. Quik, F. P. Mul, E. C. Anthony et al., Reactive oxygen species mediate Rac-induced loss of cellcell adhesion in primary human endothelial cells, J Cell Sci, vol.115, pp.1837-1846, 2002.

J. D. Van-buul, E. C. Anthony, M. Fernandez-borja, K. Burridge, and P. L. Hordijk, Proline-rich Tyrosine Kinase 2 (Pyk2) Mediates Vascular Endothelial-Cadherin-based Cell-Cell Adhesion by Regulating ??-Catenin Tyrosine Phosphorylation, Journal of Biological Chemistry, vol.280, issue.22, pp.21129-21136, 2005.
DOI : 10.1074/jbc.M500898200

M. G. Lampugnani, A. Zanetti, F. Breviario, G. Balconi, F. Orsenigo et al., VE-Cadherin Regulates Endothelial Actin Activating Rac and Increasing Membrane Association of Tiam, Molecular Biology of the Cell, vol.13, issue.4, pp.1175-1189, 2002.
DOI : 10.1091/mbc.01-07-0368

C. M. Nelson, D. M. Pirone, J. L. Tan, and C. S. Chen, Vascular Endothelial-Cadherin Regulates Cytoskeletal Tension, Cell Spreading, and Focal Adhesions by Stimulating RhoA, Molecular Biology of the Cell, vol.15, issue.6, pp.2943-2953, 2004.
DOI : 10.1091/mbc.E03-10-0745

P. Kouklis, M. Konstantoulaki, S. Vogel, M. Broman, and A. B. Malik, Cdc42 Regulates the Restoration of Endothelial Barrier Function, Circulation Research, vol.94, issue.2, pp.159-166, 2004.
DOI : 10.1161/01.RES.0000110418.38500.31

M. T. Broman, P. Kouklis, X. Gao, R. Ramchandran, R. F. Neamu et al., Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex, Circ Res, pp.98-73, 2006.

P. Kouklis, M. Konstantoulaki, and A. B. Malik, VE-cadherin-induced Cdc42 Signaling Regulates Formation of Membrane Protrusions in Endothelial Cells, Journal of Biological Chemistry, vol.278, issue.18, pp.16230-16236, 2003.
DOI : 10.1074/jbc.M212591200

J. Martinez, A. Ferber, T. L. Bach, and C. H. Yaen, Interaction of Fibrin with VE-Cadherin, Annals of the New York Academy of Sciences, vol.190, issue.1, pp.386-405, 2001.
DOI : 10.1111/j.1749-6632.2001.tb03524.x

T. J. Stelzner, J. V. Weil, and R. F. O-'brien, Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties, Journal of Cellular Physiology, vol.53, issue.1, pp.157-166, 1989.
DOI : 10.1002/jcp.1041390122

P. J. Farmer, S. G. Bernier, A. Lepage, G. Guillemette, D. Regoli et al., Sirois, Permeability of endothelial monolayers to albumin is increased by bradykinin and inhibited by prostaglandins, Am J Physiol Lung Cell Mol Physiol, vol.280, pp.732-738, 2001.

S. Fukuhara, A. Sakurai, H. Sano, A. Yamagishi, S. Somekawa et al., Cyclic AMP Potentiates Vascular Endothelial Cadherin-Mediated Cell-Cell Contact To Enhance Endothelial Barrier Function through an Epac-Rap1 Signaling Pathway, Molecular and Cellular Biology, vol.25, issue.1, pp.136-146, 2005.
DOI : 10.1128/MCB.25.1.136-146.2005

M. R. Kooistra, M. Corada, E. Dejana, and J. L. Bos, Epac1 regulates integrity of endothelial cell junctions through VE-cadherin, FEBS Letters, vol.87, issue.22, pp.579-4966, 2005.
DOI : 10.1016/j.febslet.2005.07.080

A. Sakurai, S. Fukuhara, A. Yamagishi, K. Sako, Y. Kamioka et al., MAGI-1 Is Required for Rap1 Activation upon Cell-Cell Contact and for Enhancement of Vascular Endothelial Cadherin-mediated Cell Adhesion, Molecular Biology of the Cell, vol.17, issue.2, pp.966-976, 2006.
DOI : 10.1091/mbc.E05-07-0647

W. C. Aird, Phenotypic Heterogeneity of the Endothelium: II. Representative Vascular Beds, Circulation Research, vol.100, issue.2, pp.174-190, 2007.
DOI : 10.1161/01.RES.0000255690.03436.ae

W. C. Aird, Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms, Circulation Research, vol.100, issue.2, pp.158-173, 2007.
DOI : 10.1161/01.RES.0000255691.76142.4a

J. H. Kim, J. H. Kim, J. A. Park, S. W. Lee, W. J. Kim et al., Bloodneural barrier: intercellular communication at glio-vascular interface, Journal of biochemistry and molecular biology, vol.39, pp.339-345, 2006.
DOI : 10.5483/bmbrep.2006.39.4.339

C. H. Lai and K. H. Kuo, The critical component to establish in vitro BBB model: Pericyte, Brain Research Reviews, vol.50, issue.2, pp.50-258, 2005.
DOI : 10.1016/j.brainresrev.2005.07.004

M. Furuse and S. Tsukita, Claudins in occluding junctions of humans and flies, Trends in Cell Biology, vol.16, issue.4, pp.181-188, 2006.
DOI : 10.1016/j.tcb.2006.02.006

S. Hori, S. Ohtsuki, K. Hosoya, E. Nakashima, and T. Terasaki, A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro, Journal of Neurochemistry, vol.280, issue.2, pp.503-513, 2004.
DOI : 10.1016/S0306-4522(02)00175-6

S. Dohgu, F. Takata, A. Yamauchi, S. Nakagawa, T. Egawa et al., Brain pericytes contribute to the induction and upregulation of blood-brain barrier functions through transforming growth factor-beta production, Brain Res, pp.1038-208, 2005.

S. Dohgu, A. Yamauchi, F. Takata, M. Naito, T. Tsuruo et al., Transforming Growth Factor-??1 Upregulates the Tight Junction and P-glycoprotein of Brain Microvascular Endothelial Cells, Cellular and Molecular Neurobiology, vol.24, issue.3, pp.491-497, 2004.
DOI : 10.1023/B:CEMN.0000022776.47302.ce

S. Aijaz, M. S. Balda, and K. Matter, Tight Junctions: Molecular Architecture and Function, International review of cytology, vol.248, pp.261-298, 2006.
DOI : 10.1016/S0074-7696(06)48005-0

K. Morita, H. Sasaki, K. Furuse, M. Furuse, S. Tsukita et al., Expression of claudin-5 in dermal vascular endothelia, Experimental Dermatology, vol.52, issue.3, pp.12-289, 2003.
DOI : 10.1016/S0165-3806(96)00117-4

T. Nitta, M. Hata, S. Gotoh, Y. Seo, H. Sasaki et al., Size-selective loosening of the blood-brain barrier in claudin-5???deficient mice, The Journal of Cell Biology, vol.134, issue.3, pp.653-660, 2003.
DOI : 10.1016/S1537-1891(02)00200-8

J. C. Challier, G. Dubernard, M. Galtier, T. Bintein, C. Vervelle et al., Junctions and adhesion molecules in first trimester and term human placentas, Cellular and molecular biology, pp.51-713, 2005.

S. Lievano, L. Alarcon, B. Chavez-munguia, and L. Gonzalez, Endothelia of term human placentae display diminished expression of tight junction proteins during preeclampsia, Cell and Tissue Research, vol.99, issue.3, pp.433-448, 2006.
DOI : 10.1007/s00441-005-0135-7

H. Wolburg, K. Wolburg-buchholz, J. Kraus, G. Rascher-eggstein, S. Liebner et al., Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme, Acta neuropathologica, pp.105-586, 2003.

B. E. Enerson and L. R. Drewes, The Rat Blood???Brain Barrier Transcriptome, Journal of Cerebral Blood Flow & Metabolism, vol.276, issue.7, pp.959-973, 2006.
DOI : 10.1038/sj.jcbfm.9600249

S. Liebner, A. Fischmann, G. Rascher, F. Duffner, E. H. Grote et al., Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme, Acta Neuropathologica, vol.100, issue.3, pp.100-323, 2000.
DOI : 10.1007/s004010000180

G. Bazzoni, Endothelial tight junctions: permeable barriers of the vessel wall, Thrombosis and Haemostasis, vol.95, pp.36-42, 2006.
DOI : 10.1160/TH05-07-0488

D. C. Davies, Blood-brain barrier breakdown in septic encephalopathy and brain tumours*, Journal of Anatomy, vol.200, issue.6, pp.639-646, 2002.
DOI : 10.1046/j.1469-7580.2002.00065.x

N. S. Harhaj and D. A. Antonetti, Regulation of tight junctions and loss of barrier function in pathophysiology, The International Journal of Biochemistry & Cell Biology, vol.36, issue.7, pp.1206-1237, 2004.
DOI : 10.1016/j.biocel.2003.08.007

A. Macintyre, C. J. Hammond, C. S. Little, D. M. Appelt, and B. J. Balin, Chlamydia pneumoniae infection alters the junctional complex proteins of human brain microvascular endothelial cells, FEMS microbiology letters, pp.217-167, 2002.

N. Sawada, M. Murata, K. Kikuchi, M. Osanai, H. Tobioka et al., Tight junctions and human diseases, Tight junctions and human diseases, pp.147-156, 2003.
DOI : 10.1007/s00795-003-0219-y

B. T. Hawkins, T. J. Abbruscato, R. D. Egleton, R. C. Brown, J. D. Huber et al., Nicotine increases in vivo blood???brain barrier permeability and alters cerebral microvascular tight junction protein distribution, Brain Research, vol.1027, issue.1-2, pp.1027-1075, 2004.
DOI : 10.1016/j.brainres.2004.08.043

D. A. Antonetti, A. J. Barber, S. Khin, E. Lieth, J. M. Tarbell et al., Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group, Diabetes, vol.47, issue.12, pp.1953-1959, 1998.
DOI : 10.2337/diabetes.47.12.1953

K. K. Erickson, J. M. Sundstrom, and D. A. Antonetti, Vascular permeability in ocular disease and the role of tight junctions, Angiogenesis, vol.66, issue.2, pp.103-117, 2007.
DOI : 10.1007/s10456-007-9067-z

J. D. Huber, R. D. Egleton, and T. P. Davis, Molecular physiology and pathophysiology of tight junctions in the blood???brain barrier, Trends in Neurosciences, vol.24, issue.12, pp.719-725, 2001.
DOI : 10.1016/S0166-2236(00)02004-X

P. Vajkoczy and M. D. Menger, Vascular Microenvironment in Gliomas, Journal of neurooncology, vol.50, pp.99-108, 2000.
DOI : 10.1007/978-1-4419-8871-3_15

R. C. Brown and T. P. Davis, Calcium Modulation of Adherens and Tight Junction Function: A Potential Mechanism for Blood-Brain Barrier Disruption After Stroke, Stroke, vol.33, issue.6, pp.33-1706, 2002.
DOI : 10.1161/01.STR.0000016405.06729.83

R. C. Brown and T. P. Davis, Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells, Biochemical and Biophysical Research Communications, vol.327, issue.4, pp.1114-1123, 2005.
DOI : 10.1016/j.bbrc.2004.12.123

M. Saitou, M. Furuse, H. Sasaki, J. D. Schulzke, M. Fromm et al., Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands, Molecular Biology of the Cell, vol.11, issue.12, pp.4131-4142, 2000.
DOI : 10.1091/mbc.11.12.4131

M. A. Behzadian, L. J. Windsor, N. Ghaly, G. Liou, N. T. Tsai et al., VEGFinduced paracellular permeability in cultured endothelial cells involves urokinase and its receptor, Faseb J, pp.17-752, 2003.

A. Reijerkerk, G. Kooij, S. M. Van-der-pol, S. Khazen, C. D. Dijkstra et al., Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells, The FASEB Journal, vol.20, issue.14, pp.20-2550, 2006.
DOI : 10.1096/fj.06-6099fje

M. Wachtel, K. Frei, E. Ehler, A. Fontana, K. Winterhalter et al., Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition, J Cell Sci, vol.112, pp.4347-4356, 1999.

D. A. Antonetti, A. J. Barber, L. A. Hollinger, E. B. Wolpert, and T. W. Gardner, Vascular Endothelial Growth Factor Induces Rapid Phosphorylation of Tight Junction Proteins Occludin and Zonula Occluden 1: A POTENTIAL MECHANISM FOR VASCULAR PERMEABILITY IN DIABETIC RETINOPATHY AND TUMORS, Journal of Biological Chemistry, vol.274, issue.33, pp.23463-23467, 1999.
DOI : 10.1074/jbc.274.33.23463

N. S. Harhaj, E. A. Felinski, E. B. Wolpert, J. M. Sundstrom, T. W. Gardner et al., VEGF Activation of Protein Kinase C Stimulates Occludin Phosphorylation and Contributes to Endothelial Permeability, Investigative Opthalmology & Visual Science, vol.47, issue.11, pp.47-5106, 2006.
DOI : 10.1167/iovs.06-0322

L. Demaio, Y. S. Chang, T. W. Gardner, J. M. Tarbell, and D. A. Antonetti, Shear stress regulates occludin content and phosphorylation, American journal of physiology, pp.281-105, 2001.

L. Demaio, M. Rouhanizadeh, S. Reddy, A. Sevanian, J. Hwang et al., Oxidized phospholipids mediate occludin expression and phosphorylation in vascular endothelial cells, AJP: Heart and Circulatory Physiology, vol.290, issue.2, pp.674-683, 2006.
DOI : 10.1152/ajpheart.00554.2005

T. Hirase, S. Kawashima, E. Y. Wong, T. Ueyama, Y. Rikitake et al., Regulation of Tight Junction Permeability and Occludin Phosphorylation by RhoA-p160ROCK-dependent and -independent Mechanisms, Journal of Biological Chemistry, vol.276, issue.13, pp.10423-10431, 2001.
DOI : 10.1074/jbc.M007136200

S. M. Stamatovic, O. B. Dimitrijevic, R. F. Keep, and A. V. Andjelkovic, Protein Kinase C??-RhoA Cross-talk in CCL2-induced Alterations in Brain Endothelial Permeability, Journal of Biological Chemistry, vol.281, issue.13, pp.8379-8388, 2006.
DOI : 10.1074/jbc.M513122200

K. Wosik, R. Cayrol, A. Dodelet-devillers, F. Berthelet, M. Bernard et al., Angiotensin II Controls Occludin Function and Is Required for Blood Brain Barrier Maintenance: Relevance to Multiple Sclerosis, Journal of Neuroscience, vol.27, issue.34, pp.27-9032, 2007.
DOI : 10.1523/JNEUROSCI.2088-07.2007

T. Kago, N. Takagi, I. Date, Y. Takenaga, K. Takagi et al., Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries, Biochemical and Biophysical Research Communications, vol.339, issue.4, pp.1197-1203, 2006.
DOI : 10.1016/j.bbrc.2005.11.133

D. A. Antonetti, E. B. Wolpert, L. Demaio, N. S. Harhaj, R. C. Scaduto et al., Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin, Journal of Neurochemistry, vol.80, issue.4, pp.667-677, 2002.
DOI : 10.1046/j.0022-3042.2001.00740.x

M. S. Balda and J. M. Anderson, Two classes of tight junctions are revealed by ZO-1 isoforms, Am J Physiol, vol.264, pp.918-924, 1993.

E. Willott, M. S. Balda, M. Heintzelman, B. Jameson, and J. M. Anderson, Localization and differential expression of two isoforms of the tight junction protein ZO-1, Am J Physiol, vol.262, pp.1119-1124, 1992.

H. Kurihara, J. M. Anderson, and M. G. Farquhar, Diversity among tight junctions in rat kidney: glomerular slit diaphragms and endothelial junctions express only one isoform of the tight junction protein ZO-1., Proceedings of the National Academy of Sciences, vol.89, issue.15, pp.7075-7079, 1992.
DOI : 10.1073/pnas.89.15.7075

B. H. Keon, S. Schafer, C. Kuhn, C. Grund, and W. W. Franke, Symplekin, a novel type of tight junction plaque protein, The Journal of Cell Biology, vol.134, issue.4, pp.1003-1018, 1996.
DOI : 10.1083/jcb.134.4.1003

M. Aurrand-lions, C. Johnson-leger, C. Wong, L. Du-pasquier, and B. A. Imhof, Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members, Blood, vol.98, issue.13, pp.3699-3707, 2001.
DOI : 10.1182/blood.V98.13.3699

C. Ody, S. Jungblut-ruault, D. Cossali, M. Barnet, M. Aurrand-lions et al., Junctional adhesion molecule C (JAM-C) distinguishes CD27+ germinal center B lymphocytes from non-germinal center cells and constitutes a new diagnostic tool for B-cell malignancies, Leukemia, vol.8, issue.6, pp.1285-1293, 2007.
DOI : 10.1038/nrc1888

A. P. Morris, A. Tawil, Z. Berkova, L. Wible, C. W. Smith et al., Junctional Adhesion Molecules (JAMs) are Differentially Expressed in Fibroblasts and Co-Localize with ZO-1 to Adherens-Like Junctions, Cell Communication & Adhesion, vol.108, issue.4, pp.233-247, 2006.
DOI : 10.1091/mbc.E04-04-0317

D. Palmeri, A. Van-zante, C. C. Huang, S. Hemmerich, and S. D. Rosen, Vascular Endothelial Junction-associated Molecule, a Novel Member of the Immunoglobulin Superfamily, Is Localized to Intercellular Boundaries of Endothelial Cells, Journal of Biological Chemistry, vol.275, issue.25, pp.19139-19145, 2000.
DOI : 10.1074/jbc.M003189200

T. W. Liang, R. A. Demarco, R. J. Mrsny, A. Gurney, A. Gray et al., Characterization of huJAM: evidence for involvement in cell-cell contact and tight junction regulation, Am J Physiol Cell Physiol, vol.279, pp.1733-1743, 2000.

Y. Liu, A. Nusrat, F. J. Schnell, T. A. Reaves, S. Walsh et al., Human junction adhesion molecule regulates tight junction resealing in epithelia, J Cell Sci, vol.113, pp.2363-2374, 2000.

E. Dejana, R. Spagnuolo, and G. Bazzoni, Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration, Thrombosis and haemostasis, vol.86, pp.308-315, 2001.

H. Ozaki, K. Ishii, H. Horiuchi, H. Arai, T. Kawamoto et al., Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells, J Immunol, vol.163, pp.553-557, 1999.

S. Nourshargh, F. Krombach, and E. Dejana, The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues, Journal of Leukocyte Biology, vol.80, issue.4, pp.714-718, 2006.
DOI : 10.1189/jlb.1105645

G. Ostermann, K. S. Weber, A. Zernecke, A. Schroder, and C. Weber, JAM-1 is a ligand of the ??2 integrin LFA-1 involved in transendothelial migration of leukocytes, Nature Immunology, vol.3, issue.2, pp.151-158, 2002.
DOI : 10.1038/ni755

M. R. Cera, A. Del-prete, A. Vecchi, M. Corada, I. Martin-padura et al., Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A???deficient mice, Journal of Clinical Investigation, vol.114, issue.5, pp.729-738, 2004.
DOI : 10.1172/JCI21231DS1

V. G. Cooke, M. U. Naik, and U. P. Naik, Fibroblast Growth Factor-2 Failed to Induce Angiogenesis in Junctional Adhesion Molecule-A-Deficient Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.9, 2005.
DOI : 10.1161/01.ATV.0000234923.79173.99

M. Corada, S. Chimenti, M. R. Cera, M. Vinci, M. Salio et al., Junctional adhesion molecule-A-deficient polymorphonuclear cells show reduced diapedesis in peritonitis and heart ischemia-reperfusion injury, Proceedings of the National Academy of Sciences, vol.102, issue.30, pp.10634-10639, 2005.
DOI : 10.1073/pnas.0500147102

A. Khandoga, J. S. Kessler, H. Meissner, M. Hanschen, M. Corada et al., Junctional adhesion molecule-A deficiency increases hepatic ischemia-reperfusion injury despite reduction of neutrophil transendothelial migration, Blood, vol.106, issue.2, pp.725-733, 2005.
DOI : 10.1182/blood-2004-11-4416

M. Aurrand-lions, L. Duncan, C. Ballestrem, and B. A. Imhof, JAM-2, a Novel Immunoglobulin Superfamily Molecule, Expressed by Endothelial and Lymphatic Cells, Journal of Biological Chemistry, vol.276, issue.4, pp.2733-2741, 2001.
DOI : 10.1074/jbc.M005458200

C. Lamagna, P. Meda, G. Mandicourt, J. Brown, R. J. Gilbert et al., Dual Interaction of JAM-C with JAM-B and ??M??2 Integrin: Function in Junctional Complexes and Leukocyte Adhesion, Molecular Biology of the Cell, vol.16, issue.10, pp.4992-5003, 2005.
DOI : 10.1091/mbc.E05-04-0310

V. V. Orlova, M. Economopoulou, F. Lupu, S. Santoso, and T. Chavakis, Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin???mediated cell???cell contacts, The Journal of Experimental Medicine, vol.2, issue.12, pp.2703-2714, 2006.
DOI : 10.1182/blood-2002-05-1516

M. Sircar, P. F. Bradfield, M. Aurrand-lions, R. J. Fish, P. Alcaide et al., Neutrophil Transmigration under Shear Flow Conditions In Vitro Is Junctional Adhesion Molecule-C Independent, The Journal of Immunology, vol.178, issue.9, pp.5879-5887, 2007.
DOI : 10.4049/jimmunol.178.9.5879

C. Fuse, Y. Ishida, T. Hikita, T. Asai, and N. Oku, Junctional Adhesion Molecule-C Promotes Metastatic Potential of HT1080 Human Fibrosarcoma, Journal of Biological Chemistry, vol.282, issue.11, pp.8276-8283, 2007.
DOI : 10.1074/jbc.M608836200

S. Santoso, V. V. Orlova, K. Song, U. J. Sachs, C. L. Andrei-selmer et al., The Homophilic Binding of Junctional Adhesion Molecule-C Mediates Tumor Cell-Endothelial Cell Interactions, Journal of Biological Chemistry, vol.280, issue.43, pp.36326-36333, 2005.
DOI : 10.1074/jbc.M505059200

G. Mandicourt, S. Iden, K. Ebnet, M. Aurrand-lions, and B. A. Imhof, JAM-C Regulates Tight Junctions and Integrin-mediated Cell Adhesion and Migration, Journal of Biological Chemistry, vol.282, issue.3, pp.1830-1837, 2007.
DOI : 10.1074/jbc.M605666200

B. Imhof, C. Zimmerli, G. Gliki, D. Ducrest-gay, P. Juillard et al., Pulmonary dysfunction and impaired granulocyte homeostasis result in poor survival of Jam-C-deficient mice, The Journal of Pathology, vol.281, issue.2, pp.198-208, 2007.
DOI : 10.1002/path.2163

F. Wegmann, K. Ebnet, L. Du-pasquier, D. Vestweber, and S. Butz, Endothelial adhesion molecule ESAM binds directly to the multidomain adaptor MAGI-1 and recruits it to cell contacts, Experimental Cell Research, vol.300, issue.1, pp.121-133, 2004.
DOI : 10.1016/j.yexcr.2004.07.010

T. Ishida, R. K. Kundu, E. Yang, K. Hirata, Y. D. Ho et al., Targeted Disruption of Endothelial Cell-selective Adhesion Molecule Inhibits Angiogenic Processes in Vitro and in Vivo, Journal of Biological Chemistry, vol.278, issue.36, pp.34598-34604, 2003.
DOI : 10.1074/jbc.M304890200

F. Wegmann, B. Petri, A. G. Khandoga, C. Moser, A. Khandoga et al., ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability, The Journal of Experimental Medicine, vol.95, issue.7, pp.1671-1677, 2006.
DOI : 10.1084/jem.20040424

K. Irie, K. Shimizu, T. Sakisaka, W. Ikeda, and Y. Takai, Roles and modes of action of nectins in cell-cell adhesion, Seminars in cell & developmental biology, pp.15-643, 2004.

H. Nakanishi and Y. Takai, Roles of nectins in cell adhesion, migration and polarization, Biological Chemistry, vol.385, issue.10, pp.885-892, 2004.
DOI : 10.1515/BC.2004.116

M. Lopez, M. Aoubala, F. Jordier, D. Isnardon, S. Gomez et al., The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule, Blood, vol.92, pp.4602-4611, 1998.