Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications

Abstract : The completeness property of a set of invariant descriptors is of fundamental importance from the theoretical as well as the practical points of view. In this paper, we propose a general approach to construct a complete set of orthogonal Fourier-Mellin moment (OFMM) invariants. By establishing a relationship between the OFMMs of the original image and those of the image having the same shape but distinct orientation and scale, a complete set of scale and rotation invariants is derived. The efficiency and the robustness to noise of the method for recognition tasks are shown by comparing it with some existing methods on several data sets.
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00420576
Contributeur : Lotfi Senhadji <>
Soumis le : mardi 29 septembre 2009 - 13:22:40
Dernière modification le : mercredi 21 février 2018 - 01:31:51
Document(s) archivé(s) le : mardi 15 juin 2010 - 20:58:01

Fichier

Construction_of_complete_set_o...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Hui Zhang, Huazhong Shu, Pascal Haigron, Limin Luo, Baosheng Li. Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications. Image and Vision Computing, Elsevier, 2010, 28 (1), pp.38-44. 〈10.1016/j.imavis.2009.04.004〉. 〈inserm-00420576〉

Partager

Métriques

Consultations de la notice

245

Téléchargements de fichiers

373