K. Chien, Genomic circuits and the integrative biology of cardiac diseases, Nature, vol.407, issue.6801, pp.227-232, 2000.
DOI : 10.1038/35025196

D. Levy, R. Garrison, D. Savage, W. Kanell, and W. Castelli, Prognostic Implications of Echocardiographically Determined Left Ventricular Mass in the Framingham Heart Study, New England Journal of Medicine, vol.322, issue.22, pp.1561-1566, 1990.
DOI : 10.1056/NEJM199005313222203

E. Olson, A decade of discoveries in cardiac biology, Nature Medicine, vol.10, issue.5, pp.467-474, 2004.
DOI : 10.1038/nm0504-467

S. Houser and K. Margulies, Is Depressed Myocyte Contractility Centrally Involved in Heart Failure?, Circulation Research, vol.92, issue.4, pp.350-358, 2003.
DOI : 10.1161/01.RES.0000060027.40275.A6

M. Yano, Y. Ikeda, and M. Matsuzaki, Altered intracellular Ca2+ handling in heart failure, Journal of Clinical Investigation, vol.115, issue.3, pp.556-564, 2005.
DOI : 10.1172/JCI24159

S. Minamisawa, M. Hoshijima, G. Chu, C. Ward, K. Frank et al., Chronic Phospholamban???Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy, Cell, vol.99, issue.3, pp.313-322, 1999.
DOI : 10.1016/S0092-8674(00)81662-1

J. Schmitt, M. Kamisago, M. Asahi, G. Li, F. Ahmad et al., Dilated Cardiomyopathy and Heart Failure Caused by a Mutation in Phospholamban, Science, vol.299, issue.5611, pp.1410-1413, 2003.
DOI : 10.1126/science.1081578

X. Wehrens and A. Marks, Novel therapeutic approaches for heart failure by normalizing calcium cycling, Nature Reviews Drug Discovery, vol.87, issue.7, pp.565-573, 2004.
DOI : 10.1046/j.1540-8167.2003.03050.x

M. Hoshijima, Y. Ikeda, Y. Iwanaga, S. Minamisawa, M. Date et al., Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery, Nature Medicine
DOI : 10.1038/nm739

K. Xu, D. Huso, T. Dawson, D. Bredt, and L. Becker, Nitric oxide synthase in cardiac sarcoplasmic reticulum, Proceedings of the National Academy of Sciences, vol.96, issue.2, pp.657-662, 1999.
DOI : 10.1073/pnas.96.2.657

L. Barouch, R. Harrison, M. Skaf, G. Rosas, T. Cappola et al., Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms, Nature, vol.87, issue.6878, pp.337-339, 2002.
DOI : 10.1056/NEJM199312303292706

E. Ashley, C. Sears, S. Bryant, H. Watkins, and B. Casadei, Cardiac Nitric Oxide Synthase 1 Regulates Basal and beta-Adrenergic Contractility in Murine Ventricular Myocytes, Circulation, vol.105, issue.25, pp.3011-3016, 2002.
DOI : 10.1161/01.CIR.0000019516.31040.2D

C. Sears, S. Bryant, E. Ashley, C. Lygate, S. Rakovic et al., Cardiac Neuronal Nitric Oxide Synthase Isoform Regulates Myocardial Contraction and Calcium Handling, Circulation Research, vol.92, issue.5
DOI : 10.1161/01.RES.0000064585.95749.6D

S. Khan, M. Skaf, R. Harrison, K. Lee, K. Minhas et al., Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases, Circ Res, vol.92, pp.1279-1281, 2003.

X. Loyer, T. Damy, Z. Chvojkova, E. Robidel, F. Marotte et al., 17??-Estradiol Regulates Constitutive Nitric Oxide Synthase Expression Differentially in the Myocardium in Response to Pressure Overload, Endocrinology, vol.148, issue.10, pp.4579-4584, 2007.
DOI : 10.1210/en.2007-0228

T. Damy, P. Ratajczak, E. Robidel, J. Bendall, P. Oliviéro et al., Up-regulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats, The FASEB Journal, vol.17, pp.1934-1936, 2003.
DOI : 10.1096/fj.02-1208fje

J. Bendall, T. Damy, P. Ratajczak, X. Loyer, V. Monceau et al., Role of Myocardial Neuronal Nitric Oxide Synthase-Derived Nitric Oxide in ??-Adrenergic Hyporesponsiveness After Myocardial Infarction-Induced Heart Failure in Rat, Circulation, vol.110, issue.16, pp.2368-2375, 2004.
DOI : 10.1161/01.CIR.0000145160.04084.AC

T. Damy, P. Ratajczak, A. Shah, E. Camors, I. Marty et al., Increased neuronal nitric oxide synthase-derived NO production in the failing human heart, The Lancet, vol.363, issue.9418, pp.1365-1367, 2004.
DOI : 10.1016/S0140-6736(04)16048-0

R. Saraiva, K. Minhas, S. Raju, L. Barouch, E. Pitz et al., Deficiency of Neuronal Nitric Oxide Synthase Increases Mortality and Cardiac Remodeling After Myocardial Infarction: Role of Nitroso-Redox Equilibrium, Circulation, vol.112, issue.22, pp.3415-3422, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.557892

D. Dawson, C. Lygate, M. Zhang, K. Hulbert, S. Neubauer et al., nNOS Gene Deletion Exacerbates Pathological Left Ventricular Remodeling and Functional Deterioration After Myocardial Infarction, Circulation, vol.112, issue.24, pp.3729-3737, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.539437

X. Loyer, P. Oliviero, T. Damy, E. Robidel, F. Marotte et al., Effects of sex differences on constitutive nitric oxide synthase expression and activity in response to pressure overload in rats, AJP: Heart and Circulatory Physiology, vol.293, issue.5
DOI : 10.1152/ajpheart.00883.2007

H. Lim, D. Windt, L. Steinberg, L. Taigen, T. Witt et al., Calcineurin Expression, Activation, and Function in Cardiac Pressure-Overload Hypertrophy, Circulation, vol.101, issue.20, pp.2431-2437, 2000.
DOI : 10.1161/01.CIR.101.20.2431

Y. Zhang, M. Zhang, C. Sears, K. Emanuel, C. Redwood et al., Reduced Phospholamban Phosphorylation Is Associated With Impaired Relaxation in Left Ventricular Myocytes From Neuronal NO Synthase-Deficient Mice, Circulation Research, vol.102, issue.2, pp.242-249, 2008.
DOI : 10.1161/CIRCRESAHA.107.164798

L. Xu, J. Eu, G. Meissner, and J. Stamler, Activation of the Cardiac Calcium Release Channel (Ryanodine Receptor) by Poly-S-Nitrosylation, Science, vol.279, issue.5348, pp.234-237, 1998.
DOI : 10.1126/science.279.5348.234

M. Petroff, S. Kim, S. Pepe, C. Dessy, E. Marban et al., Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca 2 release in cardiomyocytes, Nature Cell Biology, vol.3, issue.10, pp.867-873, 2001.
DOI : 10.1038/ncb1001-867

A. Zahradnikova, I. Minarovic, R. Venema, and L. Meszaros, Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide, Cell Calcium, vol.22, issue.6, pp.447-454, 1997.
DOI : 10.1016/S0143-4160(97)90072-5

D. Gonzalez, F. Beigi, A. Treuer, and J. Hare, Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes, Proceedings of the National Academy of Sciences, vol.104, issue.51, pp.20612-20617, 2007.
DOI : 10.1073/pnas.0706796104

N. Burkard, A. Rokita, S. Kaufmann, M. Hallhuber, R. Wu et al., Conditional Neuronal Nitric Oxide Synthase Overexpression Impairs Myocardial Contractility, Circulation Research, vol.100, issue.3, pp.32-44, 2007.
DOI : 10.1161/01.RES.0000259042.04576.6a

W. Luo, I. Grupp, J. Harrer, S. Ponniah, G. Grupp et al., Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation, Circulation Research, vol.75, issue.3, pp.401-409, 1994.
DOI : 10.1161/01.RES.75.3.401

C. Badorff, H. Ruetten, S. Mueller, M. Stahmer, D. Gehring et al., Fas receptor signaling inhibits glycogen synthase kinase 3?? and induces cardiac hypertrophy following pressure overload, Journal of Clinical Investigation, vol.109, issue.3, pp.373-381, 2002.
DOI : 10.1172/JCI13779

H. Hirota, J. Chen, U. Betz, K. Rajewsky, Y. Gu et al., Loss of a gp130 Cardiac Muscle Cell Survival Pathway Is a Critical Event in the Onset of Heart Failure during Biomechanical Stress, Cell, vol.97, issue.2, pp.189-198, 1999.
DOI : 10.1016/S0092-8674(00)80729-1

T. Meguro, C. Hong, K. Asai, G. Takagi, T. Mckinsey et al., Cyclosporine Attenuates Pressure-Overload Hypertrophy in Mice While Enhancing Susceptibility to Decompensation and Heart Failure, Circulation Research, vol.84, issue.6, pp.735-740, 1999.
DOI : 10.1161/01.RES.84.6.735

J. Nienaber, H. Tachibana, N. Prasad, S. Esposito, G. Wu et al., Inhibition of receptor-localized PI3K preserves cardiac ??-adrenergic receptor function and ameliorates pressure overload heart failure, Journal of Clinical Investigation, vol.112, issue.7, pp.1067-1079, 2003.
DOI : 10.1172/JCI18213

H. Tachibana, N. Prasad, S. Lefkowitz, R. Koch, W. Rockman et al., Level of ??-Adrenergic Receptor Kinase 1 Inhibition Determines Degree of Cardiac Dysfunction After Chronic Pressure Overload-Induced Heart Failure, Circulation, vol.111, issue.5, pp.591-597, 2005.
DOI : 10.1161/01.CIR.0000142291.70954.DF

D. Maclennan and E. Kranias, Calcium: Phospholamban: a crucial regulator of cardiac contractility, Nature Reviews Molecular Cell Biology, vol.4, issue.7, pp.566-577, 2003.
DOI : 10.1038/nrm1151

P. Chohan, R. Singh, N. Dhalla, and T. Netticadan, l-Arginine administration recovers sarcoplasmic reticulum function in ischemic reperfused hearts by preventing calpain activation, Cardiovascular Research, vol.69, issue.1, pp.152-163, 2006.
DOI : 10.1016/j.cardiores.2005.07.016

K. Ito, X. Yan, X. Feng, W. Manning, W. Dillmann et al., Transgenic Expression of Sarcoplasmic Reticulum Ca2+ ATPase Modifies the Transition From Hypertrophy to Early Heart Failure, Circulation Research, vol.89, issue.5, pp.422-429, 2001.
DOI : 10.1161/hh1701.095522

J. Suarez, B. Gloss, D. Belke, Y. Hu, B. Scott et al., Doxycycline inducible expression of SERCA2a improves calcium handling and reverts cardiac dysfunction in pressure overload-induced cardiac hypertrophy, AJP: Heart and Circulatory Physiology, vol.287, issue.5
DOI : 10.1152/ajpheart.00428.2004