C. Steppan, S. Bailey, S. Bhat, E. Brown, R. Banerjee et al., The hormone resistin links obesity to diabetes, Nature, vol.409, issue.6818, pp.307-312, 2001.
DOI : 10.1038/35053000

C. Steppan, E. Brown, C. Wright, S. Bhat, R. Banerjee et al., A family of tissue-specific resistin-like molecules, Proceedings of the National Academy of Sciences, vol.98, issue.2, pp.502-506, 2001.
DOI : 10.1073/pnas.98.2.502

B. Gerstmayer, D. Kusters, S. Gebel, T. Muller, E. Van-miert et al., Identification of RELM??, a novel resistin-like molecule with a distinct expression pattern???, Genomics, vol.81, issue.6, pp.588-595, 2003.
DOI : 10.1016/S0888-7543(03)00070-3

D. Artis, M. Wang, S. Keilbaugh, W. He, M. Brenes et al., RELM??/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract, Proceedings of the National Academy of Sciences, vol.101, issue.37, pp.13596-13600, 2004.
DOI : 10.1073/pnas.0404034101

M. Nair, K. Guild, Y. Du, C. Zaph, G. Yancopoulos et al., Goblet Cell-Derived Resistin-Like Molecule ?? Augments CD4+ T Cell Production of IFN-?? and Infection-Induced Intestinal Inflammation, The Journal of Immunology, vol.181, issue.7, pp.4709-4724, 2008.
DOI : 10.4049/jimmunol.181.7.4709

R. Krimi, L. Kotelevets, L. Dubuquoy, P. Plaisancie, F. Walker et al., Resistin-like molecule ?? regulates intestinal mucous secretion and curtails TNBS-induced colitis in mice, Inflammatory Bowel Diseases, vol.14, issue.7, pp.931-941, 2008.
DOI : 10.1002/ibd.20420

M. Rajala, S. Obici, P. Scherer, and L. Rossetti, Adipose-derived resistin and gut-derived resistin-like molecule????? selectively impair insulin action on glucose production, Journal of Clinical Investigation, vol.111, issue.2, pp.225-230, 2003.
DOI : 10.1172/JCI16521

N. Shojima, T. Ogihara, K. Inukai, M. Fujishiro, H. Sakoda et al., Serum concentrations of resistin-like molecules ?? and ?? are elevated in high-fat-fed and obese db/db mice, with increased production in the intestinal tract and bone marrow, Diabetologia, vol.293, issue.5, pp.984-992, 2005.
DOI : 10.1007/s00125-005-1735-1

J. Fujio, A. Kushiyama, H. Sakoda, M. Fujishiro, T. Ogihara et al., Regulation of gut-derived resistin-like molecule ?? expression by nutrients, Diabetes Research and Clinical Practice, vol.79, issue.1, pp.2-10, 2008.
DOI : 10.1016/j.diabres.2007.04.015

G. Kellett, E. Brot-laroche, O. Mace, and A. Leturque, Sugar Absorption in the Intestine: The Role of GLUT2, Annual Review of Nutrition, vol.28, issue.1, pp.35-54, 2008.
DOI : 10.1146/annurev.nutr.28.061807.155518

J. Dyer, I. Wood, A. Palejwala, A. Ellis, and S. Shirazi-beechey, Expression of monosaccharide transporters in intestine of diabetic humans, Am J Physiol, vol.282, pp.241-248, 2002.

M. Tschop, D. Smiley, and M. Heiman, Ghrelin induces adiposity in rodents, Nature, vol.407, issue.6806, pp.908-913, 2000.
DOI : 10.1038/35038090

O. Chuadhri, C. Small, and S. Bloom, Gastrointestinal hormones regulating appetite, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.846, issue.1, pp.1187-209, 2006.
DOI : 10.1016/S0006-8993(99)01842-9

R. Ducroc, S. Guilmeau, K. Akasbi, H. Devaud, M. Buyse et al., Luminal Leptin Induces Rapid Inhibition of Active Intestinal Absorption of Glucose Mediated by Sodium-Glucose Cotransporter 1, Diabetes, vol.54, issue.2, pp.348-354, 2005.
DOI : 10.2337/diabetes.54.2.348

C. Inigo, N. Patel, G. Kellett, A. Barber, and M. Lostao, Luminal leptin inhibits intestinal sugar absorption in vivo, Acta Physiologica, vol.372, issue.4, pp.303-310, 2007.
DOI : 10.1111/j.1748-1716.2007.01707.x

T. Wong, E. Debnam, and P. Leung, Involvement of an enterocyte renin-angiotensin system in the local control of SGLT1-dependent glucose uptake across the rat small intestinal brush border membrane, The Journal of Physiology, vol.253, issue.2, pp.613-623, 2007.
DOI : 10.1113/jphysiol.2007.138578

J. Hardin, J. Wong, C. Cheeseman, and D. Gall, Effect of luminal epidermal growth factor on enterocyte glucose and proline transport, Am J Physiol, vol.271, pp.509-515, 1996.

J. Yamauchi, Y. Kawai, M. Yamada, R. Uchikawa, T. Tegoshi et al., Altered expression of goblet cell- and mucin glycosylation-related genes in the intestinal epithelium during infection with the nematode Nippostrongylus brasiliensis in rat, APMIS, vol.17, issue.4, pp.270-278, 2008.
DOI : 10.1016/S0014-4894(02)00020-6

O. Norkina, S. Kaur, D. Ziemer, D. Lisle, and R. , Inflammation of the cystic fibrosis mouse small intestine, AJP: Gastrointestinal and Liver Physiology, vol.286, issue.6, pp.1032-1041, 2004.
DOI : 10.1152/ajpgi.00473.2003

J. Walker, H. Jijon, H. Diaz, P. Salehi, T. Churchill et al., 5-Aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK, Biochemical Journal, vol.385, issue.2, pp.485-491, 2005.
DOI : 10.1042/BJ20040694

W. He, M. Wang, H. Jiang, C. Steppan, M. Shin et al., Bacterial colonization leads to the colonic secretion of RELM??/FIZZ2, a novel goblet cell-specific protein, Gastroenterology, vol.125, issue.5, pp.1388-1397, 2003.
DOI : 10.1016/j.gastro.2003.07.009

R. Ducroc and T. Voisin, Orexins Control Intestinal Glucose Transport by Distinct Neuronal, Endocrine, and Direct Epithelial Pathways, Diabetes, vol.56, issue.10, pp.2494-2500, 2007.
DOI : 10.2337/db07-0614

URL : https://hal.archives-ouvertes.fr/inserm-00160933

P. Helliwell, M. Rumsby, and G. Kellett, Intestinal Sugar Absorption Is Regulated by Phosphorylation and Turnover of Protein Kinase C ??II Mediated by Phosphatidylinositol 3-Kinase- and Mammalian Target of Rapamycin-dependent Pathways, Journal of Biological Chemistry, vol.278, issue.31, pp.28644-28650, 2003.
DOI : 10.1074/jbc.M301479200

M. Lostao, E. Urdaneta, E. Martinez-anso, A. Barber, and J. Martinez, Presence of leptin receptors in rat small intestine and leptin effect on sugar absorption, FEBS Letters, vol.93, issue.3, pp.302-306, 1998.
DOI : 10.1016/S0014-5793(98)00110-0

A. Kushiyama, N. Shojima, T. Ogihara, K. Inukai, H. Sakoda et al., Resistin-like Molecule ?? Activates MAPKs, Suppresses Insulin Signaling in Hepatocytes, and Induces Diabetes, Hyperlipidemia, and Fatty Liver in Transgenic Mice on a High Fat Diet, Journal of Biological Chemistry, vol.280, issue.51, pp.42016-42025, 2005.
DOI : 10.1074/jbc.M503065200

G. Kellett and P. Helliwell, The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane

G. Kellett and E. Brot-laroche, Apical GLUT2: A Major Pathway of Intestinal Sugar Absorption, Diabetes, vol.54, issue.10, pp.3056-3062, 2005.
DOI : 10.2337/diabetes.54.10.3056

A. Hirsh and C. Cheeseman, Cholecystokinin Decreases Intestinal Hexose Absorption by a Parallel Reduction in SGLT1 Abundance in the Brush-Border Membrane, Journal of Biological Chemistry, vol.273, issue.23, pp.14545-14549, 1998.
DOI : 10.1074/jbc.273.23.14545

J. Affleck, P. Helliwell, and G. Kellett, Immunocytochemical Detection of GLUT2 at the Rat Intestinal Brush-border Membrane, Journal of Histochemistry & Cytochemistry, vol.55, issue.11, pp.1567-1574, 2003.
DOI : 10.1042/bj20020393

A. Au, A. Gupta, P. Schembri, and C. Cheeseman, Rapid insertion of GLUT2 into the rat jejunal brush-border membrane promoted by glucagon-like peptide 2, Biochemical Journal, vol.367, issue.1, pp.247-254, 2002.
DOI : 10.1042/bj20020393

G. Millar, J. Hardin, L. Johnson, and D. Gall, The role of PI 3-kinase in EGF-stimulated jejunal glucose transport, Canadian Journal of Physiology and Pharmacology, vol.80, issue.1, pp.77-84, 2002.
DOI : 10.1139/y02-012

J. Barrenetxe, N. Sainz, A. Barber, and M. Lostao, Involvement of PKC and PKA in the inhibitory effect of leptin on intestinal galactose absorption, Biochemical and Biophysical Research Communications, vol.317, issue.3, pp.717-721, 2004.
DOI : 10.1016/j.bbrc.2004.03.106

E. Wright, J. Hirsch, D. Loo, and G. Zampighi, Regulation of Na+/glucose cotransporters, J Exp Biol, vol.200, pp.287-293, 1997.

P. Kennelly and E. Krebs, Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases, J Biol Chem, vol.266, pp.15555-15558, 1991.

K. Lemieux, D. Konrad, A. Klip, and A. Marette, The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinases ?? and ?? in skeletal muscle, The FASEB Journal, vol.17, issue.12, pp.1658-1665, 2003.
DOI : 10.1096/fj.02-1125com

H. Van-thuijl, B. Kola, and M. Korbonits, Appetite and Metabolic Effects of Ghrelin and Cannabinoids: Involvement of AMP-Activated Protein Kinase, Vitam Horm, vol.77, pp.121-148, 2008.
DOI : 10.1016/S0083-6729(06)77006-6

D. Hardie, AMPK: a key regulator of energy balance in the single cell and the whole organism, International Journal of Obesity, vol.91, pp.7-12, 2008.
DOI : 10.1038/sj.ijo.0802629

G. Boudry, C. Cheeseman, and M. Perdue, Physiological stress impairs Na + -dependent glucose absorption and increases GLUT2 expression in the rat jejunal brush-border membrane, Am J Physiol, vol.292, pp.862-867, 2007.

P. Amador, J. García-herrera, M. Marca, J. De-la-osada, S. Acín et al., Intestinal d-Galactose Transport in an Endotoxemia Model in the Rabbit, Journal of Membrane Biology, vol.200, issue.3, pp.125-133, 2007.
DOI : 10.1007/s00232-007-9012-5

U. Sundaram, S. Coon, S. Wisel, and A. West, Corticosteroids reverse the inhibition of Naglucose cotransport in the chronically inflamed rabbit ileum, Am J Physiol, vol.276, pp.211-218, 1999.

J. Hardin, K. Kroeker, B. Chung, and D. Gall, Effect of proinflammatory interleukins on jejunal nutrient transport, Gut, vol.47, issue.2, pp.184-191, 2000.
DOI : 10.1136/gut.47.2.184

L. Mcvay, S. Keilbaugh, T. Wong, S. Kierstein, M. Shin et al., Absence of bacterially induced RELM?? reduces injury in the dextran sodium sulfate model of colitis, Journal of Clinical Investigation, vol.116, issue.11, pp.2914-2923, 2006.
DOI : 10.1172/JCI28121

P. Knight, A. Pemberton, K. Robertson, D. Roy, S. Wright et al., Expression Profiling Reveals Novel Innate and Inflammatory Responses in the Jejunal Epithelial Compartment during Infection with Trichinella spiralis, Infection and Immunity, vol.72, issue.10, pp.6076-6086, 2004.
DOI : 10.1128/IAI.72.10.6076-6086.2004

P. Cammisotto, D. Gingras, and M. Bendayan, Transcytosis of gastric leptin through the rat duodenal mucosa, AJP: Gastrointestinal and Liver Physiology, vol.293, issue.4, pp.773-779, 2007.
DOI : 10.1152/ajpgi.00260.2007

V. Tobin, L. Gall, M. Fioramonti, X. Stolarczyk, E. Blazquez et al., Insulin Internalizes GLUT2 in the Enterocytes of Healthy but Not Insulin-Resistant Mice, Diabetes, vol.57, issue.3, pp.555-562, 2008.
DOI : 10.2337/db07-0928

URL : https://hal.archives-ouvertes.fr/hal-00195152

Y. Qi, Z. Nie, Y. Lee, N. Singhal, P. Scherer et al., Loss of Resistin Improves Glucose Homeostasis in Leptin Deficiency, Diabetes, vol.55, issue.11, pp.3083-3090, 2006.
DOI : 10.2337/db05-0615

I. Holcomb, R. Kabakoff, C. B. Baker, T. Gurney, A. Henzel et al., FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family, <0.05 versus control. Area under the curve (inset) is expressed in arbitrary units (AU). In absence (0, clear bar) and in presence of 0.1 nmol/L (black) and 1 nmol/L (hatch) RELM-??, pp.4046-4055, 2000.
DOI : 10.1093/emboj/19.15.4046