E. Fombonne, Epidemiology of autistic disorder and other pervasive developmental disorders, J Clin Psychiatry, vol.66, issue.10, pp.3-8, 2005.

B. S. Abrahams and D. H. Geschwind, Advances in autism genetics: on the threshold of a new neurobiology, Nature Reviews Genetics, vol.9, issue.5, pp.341-355, 2008.
DOI : 10.1038/nrg2346

J. Sebat, Strong Association of De Novo Copy Number Mutations with Autism, Science, vol.316, issue.5823, pp.445-449, 2007.
DOI : 10.1126/science.1138659

C. R. Marshall, Structural Variation of Chromosomes in Autism Spectrum Disorder, The American Journal of Human Genetics, vol.82, issue.2, pp.477-488, 2008.
DOI : 10.1016/j.ajhg.2007.12.009

J. Chelly, Genetics and pathophysiology of mental retardation, European Journal of Human Genetics, vol.13, issue.6, pp.701-713, 2006.
DOI : 10.1016/j.neuron.2005.01.038

P. Chiurazzi, XLMR genes: update 2007, European Journal of Human Genetics, vol.8, issue.4, pp.422-434, 2008.
DOI : 10.1007/s00439-006-0162-9

T. A. Blanpied and M. D. Ehlers, Microanatomy of dendritic spines: emerging principles of synaptic pathology in psychiatric and neurological disease, Biological Psychiatry, vol.55, issue.12, pp.1121-1127, 2004.
DOI : 10.1016/j.biopsych.2003.10.006

P. Scheiffele, CNS, Annual Review of Neuroscience, vol.26, issue.1, pp.485-508, 2003.
DOI : 10.1146/annurev.neuro.26.043002.094940

K. Gerrow and A. Husseini, Cell adhesion molecules at the synapse, Frontiers in Bioscience, vol.11, issue.1, pp.2400-2419, 2006.
DOI : 10.2741/1978

S. Okabe, Molecular anatomy of the postsynaptic density, Molecular and Cellular Neuroscience, vol.34, issue.4, pp.503-518, 2007.
DOI : 10.1016/j.mcn.2007.01.006

B. Chih, Control of Excitatory and Inhibitory Synapse Formation by Neuroligins, Science, vol.307, issue.5713, pp.1324-1328, 2005.
DOI : 10.1126/science.1107470

S. Jamain, Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nature Genetics, vol.34, issue.1, pp.27-29, 2003.
DOI : 10.1038/ng1136

URL : https://hal.archives-ouvertes.fr/inserm-00124744

B. Chih, Disorder-associated mutations lead to functional inactivation of neuroligins, Human Molecular Genetics, vol.13, issue.14, pp.1471-1477, 2004.
DOI : 10.1093/hmg/ddh158

D. Comoletti, The Arg451Cys-Neuroligin-3 Mutation Associated with Autism Reveals a Defect in Protein Processing, Journal of Neuroscience, vol.24, issue.20, pp.4889-4893, 2004.
DOI : 10.1523/JNEUROSCI.0468-04.2004

A. A. Chubykin, Dissection of Synapse Induction by Neuroligins: EFFECT OF A NEUROLIGIN MUTATION ASSOCIATED WITH AUTISM, Journal of Biological Chemistry, vol.280, issue.23, pp.22365-22374, 2005.
DOI : 10.1074/jbc.M410723200

A. A. Chubykin, Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2, Neuron, vol.54, issue.6, pp.919-931, 2007.
DOI : 10.1016/j.neuron.2007.05.029

F. Laumonnier, X-Linked Mental Retardation and Autism Are Associated with a Mutation in the NLGN4 Gene, a Member of the Neuroligin Family, The American Journal of Human Genetics, vol.74, issue.3, pp.552-557, 2004.
DOI : 10.1086/382137

J. B. Vincent, Mutation screening of X-chromosomal neuroligin genes: No mutations in 196 autism probands, American Journal of Medical Genetics, vol.80, issue.1, pp.82-84, 2004.
DOI : 10.1002/ajmg.b.30069

J. Gauthier, NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.28, issue.1, pp.74-75, 2005.
DOI : 10.1002/ajmg.b.30066

T. Ylisaukko-oja, Analysis of four neuroligin genes as candidates for autism, European Journal of Human Genetics, vol.63, issue.12, pp.1285-1292, 2005.
DOI : 10.1073/pnas.0405939101

F. Blasi, Absence of coding mutations in the X-linked genes neuroligin 3 and neuroligin 4 in individuals with autism from the IMGSAC collection, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.302, issue.3, pp.220-221, 2006.
DOI : 10.1002/ajmg.b.30287

A. K. Wermter, No evidence for involvement of genetic variants in the X-linked neuroligin genes NLGN3 and NLGN4X in probands with autism spectrum disorder on high functioning level, Am J Med Genet B Neuropsychiatr Genet, vol.147, pp.535-537, 2008.

J. Yan, Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients, Molecular Psychiatry, vol.10, issue.4, pp.329-332, 2005.
DOI : 10.1038/sj.mp.4001629

Z. Talebizadeh, Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism Molecular cytogenetic analysis of a familial interstitial deletion Xp22.2-22.3 with a highly variable phenotype in female carriers, J Med Genet Am J Med Genet A, vol.43, issue.140, pp.604-610, 2006.

M. Macarov, Deletions of VCX-A and NLGN4: a variable phenotype including normal intellect, Journal of Intellectual Disability Research, vol.129, issue.5, pp.329-333, 2007.
DOI : 10.1093/hmg/ddi186

A. Lawson-yuen, Familial deletion within NLGN4 associated with autism and Tourette syndrome, European Journal of Human Genetics, vol.82, issue.5, pp.614-618, 2008.
DOI : 10.1038/sj.ejhg.5202006

L. Kent, X-linked ichthyosis (steroid sulfatase deficiency) is associated with increased risk of attention deficit hyperactivity disorder, autism and social communication deficits, Journal of Medical Genetics, vol.45, issue.8, pp.519-524, 2008.
DOI : 10.1136/jmg.2008.057729

F. Mochel, Normal intelligence and social interactions in a male patient despite the deletion of NLGN4X and the VCX genes, European Journal of Medical Genetics, vol.51, issue.1, pp.68-73, 2008.
DOI : 10.1016/j.ejmg.2007.11.002

K. Tabuchi, A Neuroligin-3 Mutation Implicated in Autism Increases Inhibitory Synaptic Transmission in Mice, Science, vol.318, issue.5847, pp.71-76, 2007.
DOI : 10.1126/science.1146221

K. K. Chadman, Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice, Autism Research, vol.13, issue.3, pp.147-158, 2008.
DOI : 10.1002/aur.22

K. Radyushkin, Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit, Genes, Brain and Behavior, vol.51, issue.Suppl. 10, 2009.
DOI : 10.1111/j.1601-183X.2009.00487.x

S. Jamain, Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism, Proceedings of the National Academy of Sciences, vol.105, issue.5, pp.1710-1715, 2008.
DOI : 10.1073/pnas.0711555105

URL : https://hal.archives-ouvertes.fr/hal-00408808

F. Varoqueaux, Neuroligins Determine Synapse Maturation and Function, Neuron, vol.51, issue.6, pp.741-754, 2006.
DOI : 10.1016/j.neuron.2006.09.003

T. C. Sudhof, Neuroligins and neurexins link synaptic function to cognitive disease, Nature, vol.27, issue.7215, pp.903-911, 2008.
DOI : 10.1038/nature07456

K. Ichtchenko, Neuroligin 1: A splice site-specific ligand for ??-neurexins, Cell, vol.81, issue.3, pp.435-443, 1995.
DOI : 10.1016/0092-8674(95)90396-8

P. Scheiffele, Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons, Cell, vol.101, issue.6, pp.657-669, 2000.
DOI : 10.1016/S0092-8674(00)80877-6

C. Dean, Neurexin mediates the assembly of presynaptic terminals, Nature Neuroscience, vol.6, issue.7, pp.708-716, 2003.
DOI : 10.1038/nn1074

E. R. Graf, Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins, Cell, vol.119, issue.7, pp.1013-1026, 2004.
DOI : 10.1016/j.cell.2004.11.035

H. Taniguchi, Silencing of Neuroligin Function by Postsynaptic Neurexins, Journal of Neuroscience, vol.27, issue.11, pp.2815-2824, 2007.
DOI : 10.1523/JNEUROSCI.0032-07.2007

G. Kattenstroth, Postsynaptic N-methyl-D-aspartate receptor function requires ??-neurexins, Proceedings of the National Academy of Sciences, vol.101, issue.8, pp.2607-2612, 2004.
DOI : 10.1073/pnas.0308626100

F. R. Zahir, A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1??, Journal of Medical Genetics, vol.45, issue.4, pp.239-243, 2008.
DOI : 10.1136/jmg.2007.054437

J. T. Glessner, Autism genome-wide copy number variation reveals ubiquitin and neuronal genes, Nature, vol.8, issue.7246, pp.569-573
DOI : 10.1038/nature07953

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925224

H. G. Kim, Disruption of Neurexin 1 Associated with Autism Spectrum Disorder, The American Journal of Human Genetics, vol.82, issue.1, pp.199-207, 2008.
DOI : 10.1016/j.ajhg.2007.09.011

J. Feng, High frequency of neurexin 1?? signal peptide structural variants in patients with autism, Neuroscience Letters, vol.409, issue.1, pp.10-13, 2006.
DOI : 10.1016/j.neulet.2006.08.017

J. Yan, Neurexin 1?? structural variants associated with autism, Neuroscience Letters, vol.438, issue.3, pp.368-370, 2008.
DOI : 10.1016/j.neulet.2008.04.074

R. Redon, Global variation in copy number in the human genome, Nature, vol.38, issue.7118, pp.444-454, 2006.
DOI : 10.1126/science.1117196

D. Rujescu, Disruption of the neurexin 1 gene is associated with schizophrenia, Human Molecular Genetics, vol.18, pp.988-996, 2009.
DOI : 10.1093/hmg/ddn351

M. Missler, ??-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis, Nature, vol.423, issue.6943, pp.939-948, 2003.
DOI : 10.1038/nature01755

I. Dudanova, Deletion of ??-neurexins does not cause a major impairment of axonal pathfinding or synapse formation, The Journal of Comparative Neurology, vol.25, issue.2, pp.261-274, 2007.
DOI : 10.1002/cne.21305

W. Zhang, Extracellular Domains of ??-Neurexins Participate in Regulating Synaptic Transmission by Selectively Affecting N- and P/Q-Type Ca2+ Channels, Journal of Neuroscience, vol.25, issue.17, pp.4330-4342, 2005.
DOI : 10.1523/JNEUROSCI.0497-05.2005

B. A. Samuels, Cdk5 Promotes Synaptogenesis by Regulating the Subcellular Distribution of the MAGUK Family Member CASK, Neuron, vol.56, issue.5, pp.823-837, 2007.
DOI : 10.1016/j.neuron.2007.09.035

M. Venturin, Mutations and novel polymorphisms in coding regions and UTRs of CDK5R1 and OMG genes in patients with non-syndromic mental retardation, Neurogenetics, vol.1697, issue.5, pp.59-66, 2006.
DOI : 10.1007/s10048-005-0026-9

G. Froyen, genes, Human Mutation, vol.65, issue.10, pp.1034-1042, 2007.
DOI : 10.1002/humu.20564

URL : https://hal.archives-ouvertes.fr/hal-00655314

J. Najm, Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum, Nature Genetics, vol.40, issue.9, pp.1065-1067, 2008.
DOI : 10.1016/j.modgep.2004.03.009

Y. Sugiyama, Determination of absolute protein numbers in single synapses by a GFP-based calibration technique, Nature Methods, vol.23, issue.9, pp.677-684, 2005.
DOI : 10.1016/S0165-0270(99)00112-0

T. M. Boeckers, The postsynaptic density, Cell and Tissue Research, vol.102, issue.2, pp.409-422, 2006.
DOI : 10.1007/s00441-006-0274-5

M. Sheng and C. C. Hoogenraad, The Postsynaptic Architecture of Excitatory Synapses: A More Quantitative View, Annual Review of Biochemistry, vol.76, issue.1, pp.823-847, 2007.
DOI : 10.1146/annurev.biochem.76.060805.160029

G. Meyer, The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin, Neuropharmacology, vol.47, issue.5, pp.724-733, 2004.
DOI : 10.1016/j.neuropharm.2004.06.023

K. Gerrow, 176 A PREFORMED COMPLEX OF POSTSYNAPTIC PROTEINS IS INVOLVED IN EXCITATORY SYNAPSE DEVELOPMENT., Journal of Investigative Medicine, vol.54, issue.1, pp.547-562, 2006.
DOI : 10.2310/6650.2005.X0004.175

C. Sala, Regulation of Dendritic Spine Morphology and Synaptic Function by Shank and Homer, Neuron, vol.31, issue.1, pp.115-130, 2001.
DOI : 10.1016/S0896-6273(01)00339-7

G. Roussignol, Shank Expression Is Sufficient to Induce Functional Dendritic Spine Synapses in Aspiny Neurons, Journal of Neuroscience, vol.25, issue.14, pp.3560-3570, 2005.
DOI : 10.1523/JNEUROSCI.4354-04.2005

K. Cusmano-ozog, 22q13.3 deletion syndrome: A recognizable malformation syndrome associated with marked speech and language delay, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.47, issue.4, pp.393-398, 2007.
DOI : 10.1002/ajmg.c.30155

H. L. Wilson, Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms, Journal of Medical Genetics, vol.40, issue.8, pp.575-584, 2003.
DOI : 10.1136/jmg.40.8.575

M. C. Bonaglia, Disruption of the ProSAP2 Gene in a t(12;22)(q24.1;q13.3) Is Associated with the 22q13.3 Deletion Syndrome, The American Journal of Human Genetics, vol.69, issue.2, pp.261-268, 2001.
DOI : 10.1086/321293

M. C. Bonaglia, Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome, Journal of Medical Genetics, vol.43, issue.10, pp.822-828, 2006.
DOI : 10.1136/jmg.2005.038604

C. M. Durand, Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders, Nature Genetics, vol.28, issue.1, pp.25-27, 2007.
DOI : 10.1038/ng1933

URL : https://hal.archives-ouvertes.fr/inserm-00126175

A. Philippe, Neurobehavioral Profile and Brain Imaging Study of the 22q13.3 Deletion Syndrome in Childhood, PEDIATRICS, vol.122, issue.2, pp.376-382, 2008.
DOI : 10.1542/peds.2007-2584

A. R. Jeffries, Molecular and phenotypic characterization of ring chromosome 22, American Journal of Medical Genetics Part A, vol.205, issue.2, pp.139-147, 2005.
DOI : 10.1002/ajmg.a.30780

M. A. Manning, Terminal 22q Deletion Syndrome: A Newly Recognized Cause of Speech and Language Disability in the Autism Spectrum, PEDIATRICS, vol.114, issue.2, pp.451-457, 2004.
DOI : 10.1542/peds.114.2.451

R. Moessner, Contribution of SHANK3 Mutations to Autism Spectrum Disorder, The American Journal of Human Genetics, vol.81, issue.6, pp.1289-1297, 2007.
DOI : 10.1086/522590

J. Gauthier, Novel de novo SHANK3 mutation in autistic patients, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.40, issue.8, pp.421-424, 2009.
DOI : 10.1002/ajmg.b.30822

A. Y. Hung, Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1, Journal of Neuroscience, vol.28, issue.7, pp.1697-1708, 2008.
DOI : 10.1523/JNEUROSCI.3032-07.2008

C. Redies, Cadherins as regulators for the emergence of neural nets from embryonic divisions, Journal of Physiology-Paris, vol.97, issue.1, pp.5-15, 2003.
DOI : 10.1016/j.jphysparis.2003.10.002

J. Arikkath and L. F. Reichardt, Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity, Trends in Neurosciences, vol.31, issue.9, pp.487-494, 2008.
DOI : 10.1016/j.tins.2008.07.001

D. L. Benson and H. Tanaka, N-cadherin redistribution during synaptogenesis in hippocampal neurons, J Neurosci, vol.18, pp.6892-6904, 1998.

G. R. Phillips, Gamma-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons, J Neurosci, vol.23, pp.5096-5104, 2003.

J. A. Weiner, Gamma protocadherins are required for synaptic development in the spinal cord, Proceedings of the National Academy of Sciences, vol.102, issue.1, pp.8-14, 2005.
DOI : 10.1073/pnas.0407931101

E. M. Morrow, Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry, Science, vol.321, issue.5886, pp.218-223, 2008.
DOI : 10.1126/science.1157657

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586171

L. M. Dibbens, X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment, Nature Genetics, vol.141, issue.6, pp.776-781, 2008.
DOI : 10.1016/j.modgep.2006.03.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756413

K. Bhalla, Alterations in CDH15 and KIRREL3 in Patients with Mild to Severe Intellectual Disability, The American Journal of Human Genetics, vol.83, issue.6, pp.703-713, 2008.
DOI : 10.1016/j.ajhg.2008.10.020

L. A. Weiss, Association between Microdeletion and Microduplication at 16p11.2 and Autism, New England Journal of Medicine, vol.358, issue.7, pp.667-675, 2008.
DOI : 10.1056/NEJMoa075974

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.9518

R. A. Kumar, Recurrent 16p11.2 microdeletions in autism, Human Molecular Genetics, vol.17, issue.4, pp.628-638, 2008.
DOI : 10.1093/hmg/ddm376

S. Yasuda, Activity-Induced Protocadherin Arcadlin Regulates Dendritic Spine Number by Triggering N-Cadherin Endocytosis via TAO2?? and p38 MAP Kinases, Neuron, vol.56, issue.3, pp.456-471, 2007.
DOI : 10.1016/j.neuron.2007.08.020

URL : http://doi.org/10.1016/j.neuron.2007.08.020

P. F. Maness and M. Schachner, Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration, Nature Neuroscience, vol.22, issue.1, pp.19-26, 2007.
DOI : 10.1126/science.1093923

R. S. Schmid and P. F. Maness, L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth, Current Opinion in Neurobiology, vol.18, issue.3, pp.245-250, 2008.
DOI : 10.1016/j.conb.2008.07.015

S. Kenwrick, Neural cell recognition molecule L1: relating biological complexity to human disease mutations, Human Molecular Genetics, vol.9, issue.6, pp.879-886, 2000.
DOI : 10.1093/hmg/9.6.879

D. Karagogeos, Neural GPI anchored cell adhesion molecules, Frontiers in Bioscience, vol.8, issue.6, pp.1304-1320, 2003.
DOI : 10.2741/1214

T. Fernandez, Disruption of Contactin 4 (CNTN4) Results in Developmental Delay and Other Features of 3p Deletion Syndrome, The American Journal of Human Genetics, vol.74, issue.6, pp.1286-1293, 2004.
DOI : 10.1086/421474

J. Roohi, Disruption of contactin 4 in three subjects with autism spectrum disorder, Journal of Medical Genetics, vol.46, issue.3, pp.176-182, 2009.
DOI : 10.1136/jmg.2008.057505

Y. Yoshihara, Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: Four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily, Journal of Neurobiology, vol.204, issue.1, pp.51-69, 1995.
DOI : 10.1002/neu.480280106

A. M. Pillai, No effect of genetic deletion of contactin-associated protein (CASPR) on axonal orientation and synaptic plasticity, Journal of Neuroscience Research, vol.143, issue.11, pp.2318-2331, 2007.
DOI : 10.1002/jnr.21374

B. Bakkaloglu, Molecular Cytogenetic Analysis and Resequencing of Contactin Associated Protein-Like 2 in Autism Spectrum Disorders, The American Journal of Human Genetics, vol.82, issue.1, pp.165-173, 2008.
DOI : 10.1016/j.ajhg.2007.09.017

S. Poliak, channels in myelinated axons depends on Caspr2 and TAG-1, The Journal of Cell Biology, vol.19, issue.6, pp.1149-1160, 2003.
DOI : 10.1126/science.283.5406.1343

M. Traka, Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers, The Journal of Cell Biology, vol.18, issue.6, pp.1161-1172, 2003.
DOI : 10.1083/jcb.84.2.261

M. Alarcon, Linkage, Association, and Gene-Expression Analyses Identify CNTNAP2 as an Autism-Susceptibility Gene, The American Journal of Human Genetics, vol.82, issue.1, pp.150-159, 2008.
DOI : 10.1016/j.ajhg.2007.09.005

K. A. Strauss, Recessive Symptomatic Focal Epilepsy and Mutant Contactin-Associated Protein-like 2, New England Journal of Medicine, vol.354, issue.13, pp.1370-1377, 2006.
DOI : 10.1056/NEJMoa052773

E. Rossi, A 12Mb deletion at 7q33???q35 associated with autism spectrum disorders and primary amenorrhea, European Journal of Medical Genetics, vol.51, issue.6, pp.631-638, 2008.
DOI : 10.1016/j.ejmg.2008.06.010

A. J. Verkerk, Cntnap2 is disrupted in a family with gilles de la tourette syndrome and obsessive compulsive disorder, Genomics, vol.82, issue.1, pp.1-9, 2003.
DOI : 10.1016/S0888-7543(03)00097-1

L. Willatt, 3q29 Microdeletion Syndrome: Clinical and Molecular Characterization of a New Syndrome, The American Journal of Human Genetics, vol.77, issue.1, pp.154-160, 2005.
DOI : 10.1086/431653

S. Kakunaga, Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes, Journal of Cell Science, vol.118, issue.6, pp.1267-1277, 2005.
DOI : 10.1242/jcs.01656

A. Mizoguchi, Nectin, The Journal of Cell Biology, vol.108, issue.3, pp.555-565, 2002.
DOI : 10.1006/viro.1998.9218

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173327

M. Losh, Defining key features of the broad autism phenotype: A comparison across parents of multiple- and single-incidence autism families, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.46, issue.4, pp.424-433, 2008.
DOI : 10.1002/ajmg.b.30612

Y. V. Virkud, Familial aggregation of quantitative autistic traits in multiplex versus simplex autism, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.358, issue.1, pp.328-334, 2009.
DOI : 10.1002/ajmg.b.30810

D. E. Arking, A Common Genetic Variant in the Neurexin Superfamily Member CNTNAP2 Increases Familial Risk of Autism, The American Journal of Human Genetics, vol.82, issue.1, pp.160-164, 2008.
DOI : 10.1016/j.ajhg.2007.09.015

E. Bonora, Mutation screening and association analysis of six candidate genes for autism on chromosome 7q, European Journal of Human Genetics, vol.13, issue.2, pp.198-207, 2005.
DOI : 10.1038/sj.ejhg.5201315

T. Sakurai, Association analysis of the NrCAM gene in autism and in subsets of families with severe obsessive???compulsive or self-stimulatory behaviors, Psychiatric Genetics, vol.16, issue.6, pp.251-257, 2006.
DOI : 10.1097/01.ypg.0000242196.81891.c9

T. Marui, Association of the neuronal cell adhesion molecule (NRCAM) gene variants with autism, The International Journal of Neuropsychopharmacology, vol.12, issue.01, pp.1-10, 2009.
DOI : 10.1017/S1461145708009127

S. H. Fatemi, Reelin glycoprotein: structure, biology and roles in health and disease, Molecular Psychiatry, vol.10, issue.3, pp.251-257, 2005.
DOI : 10.1038/sj.mp.4001613

K. Wang, Common genetic variants on 5p14.1 associate with autism spectrum disorders, Nature, vol.17, issue.7246, pp.528-533
DOI : 10.1038/nature07999

J. C. Fiala, Dendritic Spine Pathology: Cause or Consequence of Neurological Disorders?, Brain Research Reviews, vol.39, issue.1, pp.29-54, 2002.
DOI : 10.1016/S0165-0173(02)00158-3

I. M. Ethell and E. B. Pasquale, Molecular mechanisms of dendritic spine development and remodeling, Progress in Neurobiology, vol.75, issue.3, pp.161-205, 2005.
DOI : 10.1016/j.pneurobio.2005.02.003

H. Y. Zoghbi, Postnatal Neurodevelopmental Disorders: Meeting at the Synapse?, Science, vol.302, issue.5646, pp.826-830, 2003.
DOI : 10.1126/science.1089071

J. L. Rubenstein and M. M. Merzenich, Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes, Brain and Behavior, vol.53, issue.5, pp.255-267, 2003.
DOI : 10.1034/j.1601-183X.2003.00037.x

Z. J. Huang and P. Scheiffele, GABA and neuroligin signaling: linking synaptic activity and adhesion in inhibitory synapse development, Current Opinion in Neurobiology, vol.18, issue.1, pp.77-83, 2008.
DOI : 10.1016/j.conb.2008.05.008

N. J. Minshew and D. L. Williams, The New Neurobiology of Autism, Archives of Neurology, vol.64, issue.7, pp.945-950, 2007.
DOI : 10.1001/archneur.64.7.945

K. S. Reddy, Cytogenetic abnormalities and fragile-x syndrome in Autism Spectrum Disorder, BMC Medical Genetics, vol.27, issue.2, p.3, 2005.
DOI : 10.1023/A:1022155201662

S. Clifford, Autism Spectrum Phenotype in Males and Females with Fragile X Full Mutation and Premutation, Journal of Autism and Developmental Disorders, vol.83, issue.4, pp.738-747, 2007.
DOI : 10.1007/s10803-006-0205-z

J. B. Dictenberg, A Direct Role for FMRP in Activity-Dependent Dendritic mRNA Transport Links Filopodial-Spine Morphogenesis to Fragile X Syndrome, Developmental Cell, vol.14, issue.6, pp.926-939, 2008.
DOI : 10.1016/j.devcel.2008.04.003

M. F. Bear, The mGluR theory of fragile X mental retardation, Trends in Neurosciences, vol.27, issue.7, pp.370-377, 2004.
DOI : 10.1016/j.tins.2004.04.009

Q. J. Yan, Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP, Neuropharmacology, vol.49, issue.7, pp.1053-1066, 2005.
DOI : 10.1016/j.neuropharm.2005.06.004

G. Dolen, Correction of Fragile X Syndrome in Mice, Neuron, vol.56, issue.6, pp.955-962, 2007.
DOI : 10.1016/j.neuron.2007.12.001

M. Nakamoto, Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors, Proceedings of the National Academy of Sciences, vol.104, issue.39, 2007.
DOI : 10.1073/pnas.0707484104

F. M. De-vrij, Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice, Neurobiology of Disease, vol.31, issue.1, pp.127-132, 2008.
DOI : 10.1016/j.nbd.2008.04.002

J. Guy, Reversal of Neurological Defects in a Mouse Model of Rett Syndrome, Science, vol.315, issue.5815, pp.1143-1147, 2007.
DOI : 10.1126/science.1138389

E. Giacometti, Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2, Proceedings of the National Academy of Sciences, vol.104, issue.6, pp.1931-1936, 2007.
DOI : 10.1073/pnas.0610593104

D. Tropea, Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice, Proceedings of the National Academy of Sciences, vol.106, issue.6, pp.2029-2034, 2009.
DOI : 10.1073/pnas.0812394106

D. Ehninger, Reversal of learning deficits in a Tsc2+/??? mouse model of tuberous sclerosis, Nature Medicine, vol.33, issue.8, pp.843-848, 2008.
DOI : 10.1038/nm1788

J. Zhou, Pharmacological Inhibition of mTORC1 Suppresses Anatomical, Cellular, and Behavioral Abnormalities in Neural-Specific Pten Knock-Out Mice, Journal of Neuroscience, vol.29, issue.6, pp.1773-1783, 2009.
DOI : 10.1523/JNEUROSCI.5685-08.2009

L. H. Zeng, Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex, Annals of Neurology, vol.100, issue.4, pp.444-453, 2008.
DOI : 10.1002/ana.21331

D. K. Chow, Laminar and compartmental regulation of dendritic growth in mature cortex, Nature Neuroscience, vol.12, issue.2, pp.116-118, 2009.
DOI : 10.1016/j.molmed.2005.06.007

H. Schmidt, Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial, Journal of Medical Genetics, vol.46, issue.4, pp.217-222, 2009.
DOI : 10.1136/jmg.2008.062141

D. E. Reich and E. S. Lander, On the allelic spectrum of human disease, Trends in Genetics, vol.17, issue.9, pp.502-510, 2001.
DOI : 10.1016/S0168-9525(01)02410-6

J. K. Pritchard, Are Rare Variants Responsible for Susceptibility to Complex Diseases?, The American Journal of Human Genetics, vol.69, issue.1, pp.124-137, 2001.
DOI : 10.1086/321272

J. K. Pritchard and N. J. Cox, The allelic architecture of human disease genes: common disease-common variant... or not?, Human Molecular Genetics, vol.11, issue.20, pp.2417-2423, 2002.
DOI : 10.1093/hmg/11.20.2417

W. Bodmer and C. Bonilla, Common and rare variants in multifactorial susceptibility to common diseases, Nature Genetics, vol.602, issue.6, pp.695-701, 2008.
DOI : 10.1186/bcr1826

J. I. Friedman, CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy, Molecular Psychiatry, vol.48, issue.3, pp.261-266, 2008.
DOI : 10.1073/pnas.92.17.7612

H. M. Lachman, Analysis of protocadherin alpha gene deletion variant in bipolar disorder and schizophrenia, Psychiatric Genetics, vol.18, issue.3, pp.110-115, 2008.
DOI : 10.1097/YPG.0b013e3282fa1838

L. H. Brennaman and P. F. Maness, NCAM in neuropsychiatric and neurodegenerative disorders, Neurochem Res, 2008.

M. C. Donovan, Phenotypic variations on the theme of CNVs, Nature Genetics, vol.455, issue.12, pp.1392-1393, 2008.
DOI : 10.1038/nrn1993