Human Splicing Finder: an online bioinformatics tool to predict splicing signals.

Abstract : Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.
Type de document :
Article dans une revue
Nucleic Acids Research, Oxford University Press, 2009, 37 (9), pp.e67. 〈10.1093/nar/gkp215〉
Liste complète des métadonnées

Littérature citée [107 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00396239
Contributeur : Gwenaëlle Collod-Beroud <>
Soumis le : mercredi 20 décembre 2017 - 18:56:31
Dernière modification le : jeudi 11 janvier 2018 - 12:31:01

Fichier

2009-NAR ...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

François-Olivier Desmet, Dalil Hamroun, Marine Lalande, Gwenaëlle Collod-Béroud, Mireille Claustres, et al.. Human Splicing Finder: an online bioinformatics tool to predict splicing signals.. Nucleic Acids Research, Oxford University Press, 2009, 37 (9), pp.e67. 〈10.1093/nar/gkp215〉. 〈inserm-00396239〉

Partager

Métriques

Consultations de la notice

224

Téléchargements de fichiers

21