H. Kitano, Foundations of Systems Biology, 2001.

D. Noble, The Music of Life, Biology Beyond the Genome, 2006.

L. Alberghina and H. Westerhoff, Systems Biology. Definitions and Perspectives, 2005.

. Concepts, Implementation and Applications, 2005.

U. Alon, An Introduction to Systems Biology Design Principles of Biological Circuits, Boca Raton, 2007.

B. Palsson, Systems Biology: Properties of Reconstructed Networks, 2006.
DOI : 10.1017/CBO9780511790515

Z. Szallasi and J. Jörg-stelling, System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, 2006.
DOI : 10.7551/mitpress/9780262195485.001.0001

H. Kitano, Systems Biology: A Brief Overview, Science, vol.295, issue.5560, pp.1662-1664, 2002.
DOI : 10.1126/science.1069492

D. Noble, Modeling the Heart--from Genes to Cells to the Whole Organ, Science, vol.295, issue.5560, pp.1678-1682, 2002.
DOI : 10.1126/science.1069881

J. B. Bassingthwaighte, P. J. Hunter, and D. Noble, The Cardiac Physiome -Perspectives for the Future Epub ahead of print, Exp Physiol, p.19098089, 2008.

D. C. Noble and . Bernard, Claude Bernard, the first systems biologist, and the future of physiology, Experimental Physiology, vol.37, issue.1, pp.16-26, 2008.
DOI : 10.1113/expphysiol.2007.038695

D. Noble, Prologue, Annals of the New York Academy of Sciences, vol.147, issue.1, pp.xi-xix, 2008.
DOI : 10.1196/annals.1420.000

H. V. Westerhoff, A. Kolodkin, R. Conradie, S. J. Wilkinson, F. J. Bruggeman et al., Systems biology towards life in silico: mathematics of the control of living cells, Systems Biology Towards Life in Silico: Mathematics of the Control of Living Cells, pp.7-34, 2009.
DOI : 10.1007/s00285-008-0160-8

F. J. Bruggeman, S. Rossell, K. Van-eunen, J. Bouwman, H. V. Westerhoff et al., Systems Biology and the Reconstruction of the Cell: From Molecular Components to Integral Function, Subcell Biochem, vol.43, pp.239-262, 2007.
DOI : 10.1007/978-1-4020-5943-8_11

P. Hunter and P. Nielsen, A Strategy for Integrative Computational Physiology, Physiology, vol.20, issue.5, pp.316-325, 2005.
DOI : 10.1152/physiol.00022.2005

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabasi, Hierarchical Organization of Modularity in Metabolic Networks, Science, vol.297, issue.5586, pp.1551-1555, 2002.
DOI : 10.1126/science.1073374

A. L. Barabasi and Z. Oltvai, Network biology: understanding the cell's functional organization, Nature Reviews Genetics, vol.5, issue.2, pp.101-113, 2004.
DOI : 10.1038/nrg1272

P. Vignais, Science Expérimentale Et Connaissance Du Vivant. La Méthode Et Les Concepts, 2006.

P. Vignais, La Biologie Des Origines a Nos Jours, 2001.

E. Schrödinger, What Is Life?, 1944.

T. S. Kuhn, The Structure of Scientific Revolutions, 1962.

G. W. Hegel, The Encyclopedia Logic. Part I of the Encycopedia of Philosophical Sciences with the Zusätze, 1991.

R. Bertrand, History of Western Philosophy and Its Connection with Political and Social Circumstances from the Earliest Times to the Present Day, pp.701-715, 1996.

I. Prigogine, Strengers, I. La Nouvelle Alliance, Les Editions Gallimard, 1986.

G. Nicolis, Prigogine, I. Self-Organization in Non-Equilibrium Systems, 1977.

M. A. Aon and S. Cortassa, Dynamic Biological Organization. Fundamentals as Applied to Cellular Systems, 1997.
DOI : 10.1007/978-94-011-5828-2

V. Saks, N. Beraud, and T. Wallimann, Metabolic Compartmentation ??? A System Level Property of Muscle Cells, International Journal of Molecular Sciences, vol.9, issue.5, pp.751-767, 2008.
DOI : 10.3390/ijms9050751

URL : https://hal.archives-ouvertes.fr/inserm-00391390

P. S. Agutter, P. C. Malone, and D. N. Wheatley, Intracellular transport mechanisms: a critique of diffusion theory, Journal of Theoretical Biology, vol.176, issue.2, pp.261-272, 1995.
DOI : 10.1006/jtbi.1995.0196

P. S. Agutter, P. C. Malone, and D. N. Wheatley, Diffusion Theory in Biology: A Relic of Mechanistic Materialism, Journal of the History of Biology, vol.33, issue.1, pp.71-111, 2000.
DOI : 10.1023/A:1004745516972

D. N. Wheatley, Diffusion theory, the cell and the synapse, Biosystems, vol.45, issue.2, pp.151-163, 1998.
DOI : 10.1016/S0303-2647(97)00073-7

V. Saks, C. Monge, T. Anmann, and P. Dzeja, Integrated and Organized Cellular Energetic Systems: Theories of Cell Energetics, Compartmentation, and Metabolic Channeling, Molecular System Bioenergetics. Energy for Life, pp.59-110, 2007.
DOI : 10.1002/9783527621095.ch3

G. R. Welch, On the role of organized multienzyme systems in cellular metabolism: A general synthesis, Progress in Biophysics and Molecular Biology, vol.32, pp.103-191, 1977.
DOI : 10.1016/0079-6107(78)90019-6

G. Welch, Organized Multienzyme Systems, pp.1-447, 1985.

J. Ovàdi and V. Saks, On the origin of intracellular compartmentation and organized metabolic systems, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.5-12, 2004.
DOI : 10.1023/B:MCBI.0000009855.14648.2c

D. K. Srivastava and S. A. Bernhard, Metabolite transfer via enzyme-enzyme complexes, Science, vol.234, issue.4780, pp.1081-1086, 1986.
DOI : 10.1126/science.3775377

H. Qian and E. L. Elson, Single-molecule enzymology: stochastic Michaelis???Menten kinetics, Biophysical Chemistry, vol.101, issue.102, pp.565-576, 2002.
DOI : 10.1016/S0301-4622(02)00145-X

X. Huang, H. M. Holden, and F. M. Raushel, Channeling of Substrates and Intermediates in Enzyme-Catalyzed Reactions, Annual Review of Biochemistry, vol.70, issue.1, pp.149-180, 2001.
DOI : 10.1146/annurev.biochem.70.1.149

J. N. Weiss, L. Yang, and Z. Qu, Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Network perspectives of cardiovascular metabolism, The Journal of Lipid Research, vol.47, issue.11, pp.2355-2366, 2006.
DOI : 10.1194/jlr.R600023-JLR200

V. Saks, P. Dzeja, U. Schlattner, M. Vendelin, A. Terzic et al., Cardiac system bioenergetics: metabolic basis of the Frank-Starling law, The Journal of Physiology, vol.95, issue.Suppl. 3, pp.253-273, 2006.
DOI : 10.1113/jphysiol.2005.101444

URL : https://hal.archives-ouvertes.fr/inserm-00390883

J. Rosing and E. S. Slater, The value of ??G?? for the hydrolysis of ATP, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.267, issue.2, pp.275-290, 1972.
DOI : 10.1016/0005-2728(72)90116-8

H. Kammermeier, P. Schmidt, and E. Jungling, Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium?,, Journal of Molecular and Cellular Cardiology, vol.14, issue.5, pp.267-277, 1982.
DOI : 10.1016/0022-2828(82)90205-X

K. Yoshizaki, Y. Seo, H. Nishikawa, and T. Morimoto, Application of pulsed-gradient 31P NMR on frog muscle to measure the diffusion rates of phosphorus compounds in cells, Biophysical Journal, vol.38, issue.2, pp.209-211, 1982.
DOI : 10.1016/S0006-3495(82)84549-9

S. T. Kinsey, B. R. Locke, B. Benke, and T. S. Moerland, Diffusional anisotropy is induced by subcellular barriers in skeletal muscle, NMR in Biomedicine, vol.64, issue.1, pp.1-7, 1999.
DOI : 10.1002/(SICI)1099-1492(199902)12:1<1::AID-NBM539>3.0.CO;2-V

M. Vendelin, M. Eimre, E. Seppet, N. Peet, T. Andrienko et al., Intracellular diffusion of adenosine phosphates is locally restricted in cardiac muscle, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-229, 2004.
DOI : 10.1023/B:MCBI.0000009871.04141.64

URL : https://hal.archives-ouvertes.fr/inserm-00391051

M. R. Abraham, V. A. Selivanov, D. M. Hodgson, D. Pucar, L. V. Zingman et al., Coupling of Cell Energetics with Membrane Metabolic Sensing: INTEGRATIVE SIGNALING THROUGH CREATINE KINASE PHOSPHOTRANSFER DISRUPTED BY M-CK GENE KNOCK-OUT, Journal of Biological Chemistry, vol.277, issue.27, pp.24427-24434, 2002.
DOI : 10.1074/jbc.M201777200

V. A. Selivanov, A. E. Alekseev, D. M. Hodgson, P. P. Dzeja, and A. Terzic, Nucleotide-Gated K- ATP Channels Integrated with Creatine and Adenylate Kinases: Amplification, Tuning and Sensing of Energetics Signals in the Compartmentalized Cellular Environment, Mol. Cell. Biol, vol.257, pp.256-243, 2004.

H. J. Kennedy, A. E. Pouli, E. K. Ainscow, L. S. Jouaville, R. Rizzuto et al., Glucose Generates Sub-Plasma Membrane ATP Microdomains in Single Islet -Cells, J. Biol. Chem, vol.274, pp.13291-13291, 1999.

S. Neubauer, The Failing Heart ??? An Engine Out of Fuel, New England Journal of Medicine, vol.356, issue.11, pp.1140-1151, 2007.
DOI : 10.1056/NEJMra063052

D. W. Fawcett and N. S. Mcnutt, THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM: I. Ventricular Papillary Muscle, The Journal of Cell Biology, vol.42, issue.1, pp.1-45, 1969.
DOI : 10.1083/jcb.42.1.1

M. Aon, S. Cortassa, and B. O-'rourke, Percolation and criticality in a mitochondrial network, Proc.Natl. Acad. Sci, pp.4447-4452, 2004.
DOI : 10.1073/pnas.0307156101

J. Bereiter-hahn and M. Voth, Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria, Microscopy Research and Technique, vol.5, issue.3, pp.198-219, 1994.
DOI : 10.1002/jemt.1070270303

M. Yi, ;. D. Weaver, and G. Hajnocsky, Control of mitochondrial motility and distribution by the calcium signal, The Journal of Cell Biology, vol.61, issue.4, pp.661-672, 2004.
DOI : 10.1038/14101

D. A. Rube and A. M. Van-den-bliek, Mitochondrial morphology is dynamic and varied, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.331-339, 2004.
DOI : 10.1023/B:MCBI.0000009879.01256.f6

P. Mitchell, Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism, Nature, vol.182, issue.4784, pp.144-148, 1961.
DOI : 10.1002/jez.1400510306

S. Gudbjarnason, P. Mathes, and K. G. Raven, Functional compartmentation of ATP and creatine phosphate in heart muscle, Journal of Molecular and Cellular Cardiology, vol.1, issue.3, pp.325-339, 1970.
DOI : 10.1016/0022-2828(70)90009-X

V. V. Kupriyanov, V. L. Lakomkin, O. V. Korchazhkina, A. Steinschneider, . Ya et al., Control of Cardiac Energy Turnover by Cytoplasmic Phosphates, p.31

G. Mclellan, A. Weisberg, and S. Winegrad, Energy Transport from Mitochondria to Myofibril by a Creatine Phosphate Shuttle in Cardiac Cells, Am. J. Physiol, vol.254, pp.423-427, 1983.

V. A. Saks, ;. L. Rosenshtraukh, A. Undrovinas, V. N. Smirnov, and E. Chazov, Studies of energy transport in heart cells intracellular creatine content as a regulatory factor of frog heart energetics and force of contraction, Biochemical Medicine, vol.16, issue.1, pp.21-36, 1976.
DOI : 10.1016/0006-2944(76)90005-3

V. A. Saks, Z. A. Khuchua, E. V. Vasilyeva, . Belikova, O. Yu et al., Metabolic Compartmentation and Substrate Channeling in Muscle Cells Role of Coupled Creatine Kinases in Vivo Regulation of Cellular Respiration-a Synthesis, Mol. Cell. Biochem, vol.133134, pp.155-192, 1994.

V. A. Saks, R. Ventura-clapier, and M. K. Aliev, Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cells, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1274, issue.3, pp.81-92, 1996.
DOI : 10.1016/0005-2728(96)00011-4

URL : https://hal.archives-ouvertes.fr/inserm-00391366

V. Saks, P. Santos, F. N. Gellerich, and P. Diolez, Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channelling in muscle cells, Mol. Cell
DOI : 10.1007/978-1-4615-5653-4_19

S. P. Bessman and P. J. Geiger, Transport of energy in muscle: the phosphorylcreatine shuttle, Science, vol.211, issue.4481, pp.448-452, 1981.
DOI : 10.1126/science.6450446

S. P. Bessman and C. L. Carpenter, The Creatine-Creatine Phosphate Energy Shuttle, Annual Review of Biochemistry, vol.54, issue.1, pp.831-862, 1985.
DOI : 10.1146/annurev.bi.54.070185.004151

T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ???phosphocreatine circuit??? for cellular energy homeostasis, Biochemical Journal, vol.281, issue.1, pp.21-40, 1992.
DOI : 10.1042/bj2810021

P. P. Dzeja, K. T. Vitkevicius, M. M. Redfield, J. C. Burnett, and A. Terzic, Adenylate Kinase??Catalyzed Phosphotransfer in the Myocardium : Increased Contribution in Heart Failure, Circulation Research, vol.84, issue.10
DOI : 10.1161/01.RES.84.10.1137

P. Dzeja, A. Terzic, and B. Wieringa, Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-257, 2004.
DOI : 10.1023/B:MCBI.0000009856.23646.38

P. Dzeja, S. Chung, and A. Terzic, Integration of Adenylate Kinase and Glycolytic and Clycogenolytic Circuits in Cellular Energetics, Molecular System Bioenergetics. Energy for Life, pp.265-301, 2007.

V. A. Saks, T. Kaambre, P. Sikk, M. Eimre, E. Orlova et al., Intracellular energetic units in red muscle cells, Biochemical Journal, vol.356, issue.2, pp.643-665, 2001.
DOI : 10.1042/bj3560643

URL : https://hal.archives-ouvertes.fr/inserm-00391060

S. Q. Wang, C. Wei, G. Zhao, D. Brochet, J. Shen et al., Imaging Microdomain Ca 2+ in Muscle Cell, pp.1011-1022, 2004.

R. Rizzuto and T. Pozzan, Microdomains of Intracellular Ca2+: Molecular Determinants and Functional Consequences, Physiological Reviews, vol.86, issue.1, pp.369-408, 2006.
DOI : 10.1152/physrev.00004.2005

T. K. Rostovtseva, K. L. Sheldon, E. Hassanzadeh, C. Monge, V. Saks et al., Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration, Proc. Natl. Acad. Sci, pp.18746-18751, 2008.
DOI : 10.1073/pnas.0806303105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596221

T. K. Rostovtseva, S. Bezrukov, and . Vdac-regulation, VDAC regulation: role of cytosolic proteins and mitochondrial lipids, Journal of Bioenergetics and Biomembranes, vol.1706, issue.3, pp.163-170, 2008.
DOI : 10.1007/s10863-008-9145-y

J. Bereiter-hahn, Behavior of Mitochondria in the Living Cell, Int. Rev. Cytol, vol.122, pp.1-63, 1990.
DOI : 10.1016/S0074-7696(08)61205-X

V. Anesti and L. Scorrano, The relationship between mitochondrial shape and function and the cytoskeleton, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.5-6, pp.692-699, 2006.
DOI : 10.1016/j.bbabio.2006.04.013

G. Benard and R. Rossignol, Ultrastucture of Mitochondria and Its Bearing on Function and Bioenergetics. Antioxidants and Redox Signalling, pp.1313-1342, 2008.

G. Twig, B. Hyde, and O. S. Shirihai, Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.9, pp.1092-1097, 2008.
DOI : 10.1016/j.bbabio.2008.05.001

M. Karbowski and R. J. Youle, Dynamics of mitochondrial morphology in healthy cells and during apoptosis, Cell Death and Differentiation, vol.10, issue.8, pp.870-880, 2003.
DOI : 10.1038/sj.cdd.4401260

M. A. Aon, S. Cortassa, E. Marban, and B. O-'rourke, Synchronized Whole Cell Oscillations in Mitochondrial Metabolism Triggered by a Local Release of Reactive Oxygen Species in Cardiac Myocytes, Journal of Biological Chemistry, vol.278, issue.45, pp.44735-44744, 2003.
DOI : 10.1074/jbc.M302673200

M. A. Aon, S. C. Cortassa, and B. O-'rourke, The Fundamental Organization of Cardiac Mitochondria as a Network of Coupled Oscillators, Biophysical Journal, vol.91, issue.11, pp.4317-4327, 2006.
DOI : 10.1529/biophysj.106.087817

T. J. Collins, M. J. Berridge, P. Lipp, and .. M. Bootman, Mitochondria are morphologically and functionally heterogeneous within cells, The EMBO Journal, vol.21, issue.7, pp.1616-1627, 2002.
DOI : 10.1093/emboj/21.7.1616

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125942

P. Pacher, P. Csordás, T. Schneider, and G. Hajnóczky, Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria, The Journal of Physiology, vol.9, issue.3, pp.553-564, 2000.
DOI : 10.1111/j.1469-7793.2000.00553.x

D. B. Zorov, C. R. Filburn, L. O. Klotz, J. L. Zweier, and S. J. Sollott, Reactive Oxygen Species (Ros-Induced) Ros Release, The Journal of Experimental Medicine, vol.75, issue.7, pp.1001-1014, 2000.
DOI : 10.1016/0014-5793(93)81423-W

D. B. Zorov, E. Kobrinsky, M. Juhaszova, and S. J. Sollott, Examining Intracellular Organelle Function Using Fluorescent Probes: From Animalcules to Quantum Dots, Circulation Research, vol.95, issue.3, pp.239-252, 2004.
DOI : 10.1161/01.RES.0000137875.42385.8e

V. A. Saks, A. V. Kuznetsov, Z. A. Khuchua, E. V. Vasilyeva, J. O. Belikova et al., Control of cellular respiration in vivo by mitochondrial outer membrane and by Creatine Kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions, Journal of Molecular and Cellular Cardiology, vol.27, issue.1, pp.625-645, 1995.
DOI : 10.1016/S0022-2828(08)80056-9

URL : https://hal.archives-ouvertes.fr/inserm-00391370

E. H. Ball and S. J. Singer, Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts., Proc. Natl. Acad. Sci, pp.123-126, 1982.
DOI : 10.1073/pnas.79.1.123

Y. Capetenaki, Desmin Cytoskeleton A Potential Regulator of Muscle Mitochondrial Behavior and Function, Trends in Cardiovascular Medicine, vol.12, issue.8, pp.339-348, 2002.
DOI : 10.1016/S1050-1738(02)00184-6

R. D. Vale, T. Funatsu, D. W. Pierce, L. Romberg, Y. Harada et al., Direct observation of single kinesin molecules moving along microtubules, Nature, vol.380, issue.6573, pp.451-453, 1996.
DOI : 10.1038/380451a0

R. D. Vale, The Molecular Motor Toolbox for Intracellular Transport, Cell, vol.112, issue.4, pp.467-480, 2003.
DOI : 10.1016/S0092-8674(03)00111-9

D. J. Milner, M. Mavroidis, N. Weisleder, and Y. Capetanaki, Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function, The Journal of Cell Biology, vol.107, issue.161, pp.1283-1298, 2000.
DOI : 10.1016/S0092-8674(00)81017-X

T. Anmann, R. Guzun, N. Beraud, S. Pelloux, A. V. Kuznetsov et al., Different kinetics of the regulation of respiration in permeabilized cardiomyocytes and in HL-1 cardiac cells, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.12, pp.1597-1606, 2006.
DOI : 10.1016/j.bbabio.2006.09.008

C. A. Mannella, K. Buttle, and M. Marko, Reconsidering mitochondrial structure: new views of an old organelle, Trends in Biochemical Sciences, vol.22, issue.2, pp.37-38, 1997.
DOI : 10.1016/S0968-0004(96)30050-9

C. A. Mannella, D. R. Pfeiffer, P. C. Bradshaw, I. Moraruv, B. Slepchenko et al., Topology of the Mitochondrial Inner Membrane: Dynamics and Bioenergetic Implications, Topology of the Mitochondrial Inner Membrane: Dynamics and Bioenergetic Implications, pp.93-100, 2001.
DOI : 10.1080/15216540152845885

C. A. Mannella, M. Marko, P. Penczek, D. Barnard, and J. Frank, The internal compartmentation of rat-liver mitochondria: Tomographic study using the high-voltage transmission electron microscope, Microscopy Research and Technique, vol.18, issue.4, pp.278-283, 2001.
DOI : 10.1002/jemt.1070270403

C. A. Mannella, The relevance of mitochondrial membrane topology to mitochondrial function, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1762, issue.2, pp.140-147, 2001.
DOI : 10.1016/j.bbadis.2005.07.001

M. A. Aon, S. Cortassa, and B. O-'rourke, On the Network Properties of Mitochondria, Molecular System Bioenergetics, Energy for Life, pp.111-135, 2007.
DOI : 10.1002/9783527621095.ch4

C. N. Sun, N. S. Dhalla, and R. E. Olson, Formation of gigantic mitochondria in hypoxic isolated perfused rat hearts, Experientia, vol.25, issue.7, pp.763-764, 1969.
DOI : 10.1007/BF01897616

E. Lorenz and A. Terzic, Physical Association Between Recombinant Cardiac ATP-sensitive K+Channel Subunits Kir6.2 and SUR2A, Journal of Molecular and Cellular Cardiology, vol.31, issue.2, pp.425-434, 1999.
DOI : 10.1006/jmcc.1998.0876

R. M. Crawford, H. J. Ranki, C. H. Botting, G. R. Budas, and A. Jovanovic, Creatine kinase is physically associated with the cardiac ATP-sensitive k+ channel in vivo, The FASEB Journal, vol.16, pp.102-104, 2002.
DOI : 10.1096/fj.01-0466fje

A. J. Carrasco, P. P. Dzeja, A. E. Alekseev, D. Pucar, L. V. Zingman et al., Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels, Proc. Natl. Acad. Sci, pp.7623-7628, 2001.
DOI : 10.1073/pnas.121038198

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC34718

A. Noma, ATP-regulated K+ channels in cardiac muscle, Nature, vol.322, issue.5930, pp.147-148, 1983.
DOI : 10.1038/305147a0

A. Noma and T. Shibasaki, Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells., The Journal of Physiology, vol.363, issue.1, pp.463-480, 1985.
DOI : 10.1113/jphysiol.1985.sp015722

E. Carmeliet, A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells?, Cardiovascular Research, vol.26, issue.5, pp.433-442, 1992.
DOI : 10.1093/cvr/26.5.433

N. Sasaki, T. Sato, E. Marban, and B. O-'rourke, ATP Consumption by Uncoupled Mitochondria Activates Sarcolemmal K-ATP Channels in Cardiac Myocytes, Am. J. Physiol, vol.280, pp.1882-1888, 2001.

A. E. Alekseev, D. M. Hodgso, A. B. Karger, S. Park, L. V. Zingman et al., ATP-sensitive K channel channel/enzyme multimer: Metabolic gating in the heart, Journal of Molecular and Cellular Cardiology, vol.38, issue.6, pp.895-905, 2005.
DOI : 10.1016/j.yjmcc.2005.02.022

D. Bers, Excitation-Contraction Coupling and Cardiac Contraction, 2001.

D. Bers, Cardiac excitation???contraction coupling, Nature, vol.415, issue.6868, pp.198-205, 2002.
DOI : 10.1038/415198a

M. Endoh, Signal Transduction and Ca2+ Signaling in Intact Myocardium, Journal of Pharmacological Sciences, vol.100, issue.5, pp.525-537, 2006.
DOI : 10.1254/jphs.CPJ06009X

E. Carafoli, Historical review: Mitochondria and calcium: ups and downs of an unusual relationship, Trends in Biochemical Sciences, vol.28, issue.4, pp.175-181, 2003.
DOI : 10.1016/S0968-0004(03)00053-7

M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium: Calcium signalling: dynamics, homeostasis and remodelling, Nature Reviews Molecular Cell Biology, vol.4, issue.7, pp.517-529, 2003.
DOI : 10.1038/nrm1155

R. Rizzuto, P. Bernardi, and T. Pozzan, Mitochondria as all-round players of the calcium game, The Journal of Physiology, vol.261, issue.1
DOI : 10.1111/j.1469-7793.2000.00037.x

J. Jacobson and M. R. Duchen, Interplay between mitochondria and cellular calcium signalling, Molecular and Cellular Biochemistry, vol.256, issue.1/2
DOI : 10.1023/B:MCBI.0000009869.29827.df

K. Bianchi, A. Rimessi, A. Prandini, G. Szabadkai, and R. Rizzuto, Calcium and mitochondria: mechanisms and functions of a troubled relationship, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1742, issue.1-3, pp.119-131, 2004.
DOI : 10.1016/j.bbamcr.2004.09.015

L. E. Meyer, L. B. Machado, A. P. Santiago, S. Da-silva, F. G. De-felice et al., Mitochondrial Creatine Kinase Activity Prevents Reactive Oxygen Species Generation: ANTIOXIDANT ROLE OF MITOCHONDRIAL KINASE-DEPENDENT ADP RE-CYCLING ACTIVITY, Journal of Biological Chemistry, vol.281, issue.49, pp.37361-37371, 2006.
DOI : 10.1074/jbc.M604123200

V. A. Saks, R. Favier, R. Guzun, U. Schlattner, and T. Wallimann, Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands, The Journal of Physiology, vol.103, issue.3, pp.577-769, 2006.
DOI : 10.1113/jphysiol.2006.120584

URL : https://hal.archives-ouvertes.fr/inserm-00390890

J. Williamson, Mitochondrial Function in the Heart, Annual Review of Physiology, vol.41, issue.1, pp.485-506, 1979.
DOI : 10.1146/annurev.ph.41.030179.002413

J. R. Neely and H. E. Morgan, Relationship Between Carbohydrate and Lipid Metabolism and the Energy Balance of Heart Muscle, Annual Review of Physiology, vol.36, issue.1, pp.413-459, 1974.
DOI : 10.1146/annurev.ph.36.030174.002213

W. C. Stanley, F. A. Recchia, and G. D. Lopaschuk, Myocardial Substrate Metabolism in the Normal and Failing Heart, Physiological Reviews, vol.85, issue.3, pp.1093-1129, 2005.
DOI : 10.1152/physrev.00006.2004

M. K. Aliev and V. A. Saks, Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration, Biophysical Journal, vol.73, issue.1, pp.428-445, 1997.
DOI : 10.1016/S0006-3495(97)78082-2

URL : https://hal.archives-ouvertes.fr/inserm-00391359

M. Vendelin, O. Kongas, and V. Saks, Regulation of Mitochondrial Respiration in Heart Cells Analyzed by Reaction-Diffusion Model of Energy Transfer, Am. J. Physiol. Cell. Physiol, vol.278, pp.747-764, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00392269

S. Cortassa, M. A. Aon, E. Marban, R. L. Winslow, and B. O-'rourke, An Integrated Model of Cardiac Mitochondrial Energy Metabolism and Calcium Dynamics, Biophysical Journal, vol.84, issue.4, pp.2734-2755, 2003.
DOI : 10.1016/S0006-3495(03)75079-6

S. Cortassa, M. A. Aon, B. O-'rourke, R. Jacques, H. J. Tseng et al., A Computational Model Integrating Electrophysiology, Contraction, and Mitochondrial Bioenergetics in the Ventricular Myocyte, Biophysical Journal, vol.91, issue.4, pp.1564-1589, 2006.
DOI : 10.1529/biophysj.105.076174

D. A. Beard, Modeling of Oxygen Transport and Cellular Energetics Explains Observations on In Vivo Cardiac Energy Metabolism, PLoS Computational Biology, vol.1504, issue.9, pp.1093-1106, 2006.
DOI : 0006-3002(2001)1504[0031:TSOTRO]2.0.CO;2

S. Matsuoka, N. Sarai, H. Jo, and A. Noma, Simulation of ATP metabolism in cardiac excitation???contraction coupling, Progress in Biophysics and Molecular Biology, vol.85, issue.2-3, pp.279-299, 2004.
DOI : 10.1016/j.pbiomolbio.2004.01.006

B. Korzeniewski, Regulation of ATP supply during muscle contraction: theoretical studies, Biochemical Journal, vol.330, issue.3, pp.1189-1195, 1998.
DOI : 10.1042/bj3301189

B. Korzeniewski and J. A. Zoladz, A model of oxidative phosphorylation in mammalian skeletal muscle, Biophysical Chemistry, vol.92, issue.1-2, pp.17-34, 2001.
DOI : 10.1016/S0301-4622(01)00184-3

M. S. Jafri, S. J. Dudycha, and B. O-'rourke, Cardiac Energy Metabolism: Models of Cellular Respiration, Annual Review of Biomedical Engineering, vol.3, issue.1, pp.57-81, 2001.
DOI : 10.1146/annurev.bioeng.3.1.57

V. A. Saks, O. Kongas, M. Vendelin, and L. Kay, Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration, Acta Physiologica Scandinavica, vol.1102, issue.4, pp.635-641, 2000.
DOI : 10.1063/1.365919

URL : https://hal.archives-ouvertes.fr/inserm-00391336

L. F. Barros and C. Martinez, An Enquiry into Metabolite Domains, Biophysical Journal, vol.92, issue.11, pp.3878-3884, 2007.
DOI : 10.1529/biophysj.106.100925

E. K. Seppet, M. Eimre, T. Andrienko, T. Kaambre, P. Sikk et al., Studies of mitochondrial respiration in muscle cells in situ: Use and misuse of experimental evidence in mathematical modelling, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-219, 2004.
DOI : 10.1023/B:MCBI.0000009870.24814.1c

URL : https://hal.archives-ouvertes.fr/inserm-00392261

F. Wu, F. Yang, K. C. Vinnakota, and D. A. Beard, Computer Modelling of Mitochondrial Tricarboxilic Cycle, Oxidative Phosphorylation, Metabolite Transport and Electrophysiology, J

F. Wu, E. Y. Zhang, J. Zhang, R. J. Bache, and D. A. Beard, Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts, The Journal of Physiology, vol.94, issue.17, pp.4193-4208, 2008.
DOI : 10.1113/jphysiol.2008.154732

P. Matthews, D. J. Taylor, and G. K. Radda, Biochemical mechanisms of acute contractile failure in the hypoxic rat heart, Cardiovascular Research, vol.20, issue.1, pp.13-19, 1986.
DOI : 10.1093/cvr/20.1.13

M. Spindler, B. Illing, M. Horn, M. De-groot, G. Ertl et al., Temporal fluctuations of myocardial high-energy phosphate metabolites with the cardiac cycle, Basic Research in Cardiology, vol.96, issue.6, pp.553-556, 2001.
DOI : 10.1007/s003950170006

H. Honda, K. Tanaka, N. Akita, and T. Haneda, Cyclical Changes in High-Energy Phosphates During the Cardiac Cycle by Pacing-Gated 31P Nuclear Magnetic Resonance, Circulation Journal, vol.66, issue.1, pp.80-86, 2002.
DOI : 10.1253/circj.66.80