Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands. - Inserm - Institut national de la santé et de la recherche médicale Accéder directement au contenu
Article Dans Une Revue The Journal of Physiology Année : 2006

Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands.

Résumé

This review re-evaluates regulatory aspects of substrate supply in heart. In aerobic heart, the preferred substrates are always free fatty acids, and workload-induced increase in their oxidation is observed at unchanged global levels of ATP, phosphocreatine and AMP. Here, we evaluate the mechanisms of regulation of substrate supply for mitochondrial respiration in muscle cells, and show that a system approach is useful also for revealing mechanisms of feedback signalling within the network of substrate oxidation and particularly for explaining the role of malonyl-CoA in regulation of fatty acid oxidation in cardiac muscle. This approach shows that a key regulator of fatty acid oxidation is the energy demand. Alterations in malonyl-CoA would not be the reason for, but rather the consequence of, the increased fatty acid oxidation at elevated workloads, when the level of acetyl-CoA decreases due to shifts in the kinetics of the Krebs cycle. This would make malonyl-CoA a feedback regulator that allows acyl-CoA entry into mitochondrial matrix space only when it is needed. Regulation of malonyl-CoA levels by AMPK does not seem to work as a master on-off switch, but rather as a modulator of fatty acid import.

Dates et versions

inserm-00390890 , version 1 (03-06-2009)

Identifiants

Citer

Valdur A Saks, Roland Favier, Rita Guzun, Uwe Schlattner, Théo Wallimann. Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands.. The Journal of Physiology, 2006, 577 (Pt 3), pp.769-77. ⟨10.1113/jphysiol.2006.120584⟩. ⟨inserm-00390890⟩

Collections

INSERM UGA LBFA
53 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More