Glioma, melatonin, and radiotherapy.
Didier Wion, François Berger, Nelly Wion-Barbot

To cite this version:
Didier Wion, François Berger, Nelly Wion-Barbot. Glioma, melatonin, and radiotherapy.

HAL Id: inserm-00390764
http://www.hal.inserm.fr/inserm-00390764
Submitted on 31 Jul 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Glioma, melatonin and radiotherapy.

Didier Wion, François Berger
INSERM U318 UJFG, CHU Michallon, Grenoble, France.

Nelly Wion-Barbot
Service Endocrinologie Diabétologie Nutrition, CHU Grenoble, Université J. Fourier, Grenoble, France.

To the Editor. Accumulative evidence indicates antitumor effects of melatonin in a variety of malignancies (1,2). Accordingly, Martin et al. have recently reported cell growth inhibition of glioma by melatonin (3). This study is of peculiar interest since melatonin is produced in the brain by the pineal gland. This location of the pineal gland, near the center of the brain, suggests that in addition to hypothalamic-pituitary dysfunctions (4), a melatonin deficiency could also occur in some patients following brain radiotherapy (5). Although the consequences of melatonin deficiency on glioma growth remain to be investigated, the report of Martin et al. have important implications for the development of a possible circadian-based cancer therapy of glioma. Moreover, it highlights the importance of determining the pineal status of patients following brain radiotherapy, by measuring, for example, the melatonin metabolite, 6-sulphatoxymelatonin, in the first morning urine (6). In addition to its relevance in the follow-up of patients, this dosage could help to further elucidate the link between melatonin and glioma growth.

