J. Lexell, C. Taylor, and M. Sjostrom, What is the cause of the ageing atrophy?, Journal of the Neurological Sciences, vol.84, issue.2-3, pp.275-294, 1988.
DOI : 10.1016/0022-510X(88)90132-3

P. Hasselgren and J. Fischer, Muscle Cachexia: Current Concepts of Intracellular Mechanisms and Molecular Regulation, Annals of Surgery, vol.233, issue.1, pp.9-17, 2001.
DOI : 10.1097/00000658-200101000-00003

V. Baracos, Regulation of skeletal-muscle???protein turnover in cancer-associated cachexia, Nutrition, vol.16, issue.10, pp.1015-1018, 2000.
DOI : 10.1016/S0899-9007(00)00407-X

G. Lynch, J. Schertzer, and J. Ryall, Therapeutic approaches for muscle wasting disorders, Therapeutic approaches for muscle wasting disorders, pp.461-487, 2007.
DOI : 10.1016/j.pharmthera.2006.11.004

L. Grobet, L. Martin, D. Poncelet, D. Pirottin, B. Brouwers et al., A deletion in the bovine myostatin gene causes the double???muscled phenotype in cattle, Nature Genetics, vol.18, issue.1, pp.71-74, 1997.
DOI : 10.1006/geno.1993.1465

R. Kambadur, M. Sharma, T. Smith, and J. Bass, Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle, Genome Res, vol.7, pp.910-916, 1997.

A. Mcpherron, A. Lawler, and S. Lee, Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member, nature, vol.387, issue.6628, pp.83-90, 1997.
DOI : 10.1038/387083a0

A. Mcpherron and S. Lee, Double muscling in cattle due to mutations in the myostatin gene, Proceedings of the National Academy of Sciences, vol.94, issue.23, pp.12457-12461, 1997.
DOI : 10.1073/pnas.94.23.12457

D. Joulia, H. Bernardi, V. Garandel, F. Rabenoelina, B. Vernus et al., Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin, Experimental Cell Research, vol.286, issue.2, pp.263-275, 2003.
DOI : 10.1016/S0014-4827(03)00074-0

B. Langley, M. Thomas, C. Mcfarlane, S. Gilmour, M. Sharma et al., Myostatin inhibits rhabdomyosarcoma cell proliferation through an Rb-independent pathway, Oncogene, vol.23, issue.2, pp.524-534, 2004.
DOI : 10.1038/sj.onc.1207144

R. Rios, I. Carneiro, V. Arce, and J. Devesa, Myostatin Regulates Cell Survival during C2C12 Myogenesis, Biochemical and Biophysical Research Communications, vol.280, issue.2, pp.561-566, 2001.
DOI : 10.1006/bbrc.2000.4159

R. Rios, I. Carneiro, V. Arce, and J. Devesa, Myostatin is an inhibitor of myogenic differentiation, AJP: Cell Physiology, vol.282, issue.5, pp.993-999, 2002.
DOI : 10.1152/ajpcell.00372.2001

W. Taylor, S. Bhasin, J. Artaza, F. Byhower, M. Azam et al., Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells, Am J Physiol Endocrinol Metab, vol.280, pp.221-228, 2001.

S. Mccroskery, M. Thomas, L. Maxwell, M. Sharma, and R. Kambadur, Myostatin negatively regulates satellite cell activation and self-renewal, The Journal of Cell Biology, vol.111, issue.6, pp.1135-1147, 2003.
DOI : 10.1016/S0014-5793(00)01570-2

N. Gonzalez-cadavid, W. Taylor, K. Yarasheski, I. Sinha-hikim, K. Ma et al., Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting, Proceedings of the National Academy of Sciences, vol.95, issue.25, pp.14938-14943, 1998.
DOI : 10.1073/pnas.95.25.14938

K. Yarasheski, S. Bhasin, I. Sinha-hikim, J. Pak-loduca, and N. Gonzalez-cadavid, Serum myostatin-immunoreactive protein is increased in 60 ?92 year old women and men with muscle wasting, J Nutr Health Aging, vol.6, pp.343-348, 2002.

K. Reardon, J. Davis, R. Kapsa, P. Choong, and E. Byrne, Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy, Muscle & Nerve, vol.474, issue.7, pp.893-899, 2001.
DOI : 10.1002/mus.1086

A. Durieux, A. Amirouche, S. Banzet, N. Koulmann, R. Bonnefoy et al., Ectopic Expression of Myostatin Induces Atrophy of Adult Skeletal Muscle by Decreasing Muscle Gene Expression, Endocrinology, vol.148, issue.7, pp.3140-3147, 2007.
DOI : 10.1210/en.2006-1500

URL : https://hal.archives-ouvertes.fr/inserm-00387979

P. Berthon, S. Duguez, F. Favier, A. Amirouche, L. Feasson et al., Regulation of ubiquitin???proteasome system, caspase enzyme activities, and extracellular proteinases in rat soleus muscle in response to unloading, Pfl??gers Archiv - European Journal of Physiology, vol.283, issue.Pt 1, pp.625-633, 2007.
DOI : 10.1007/s00424-007-0230-6

S. Bodine, E. Latres, S. Baumhueter, V. Lai, L. Nunez et al., Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy, Science, vol.294, issue.5547, pp.1704-1708, 2001.
DOI : 10.1126/science.1065874

S. Lecker, R. Jagoe, A. Gilbert, M. Gomes, V. Baracos et al., Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression, The FASEB Journal, vol.18, issue.1, pp.39-51, 2004.
DOI : 10.1096/fj.03-0610com

S. Duguez, M. Bihan, D. Gouttefangeas, L. Feasson, and D. Freyssenet, Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration, American Journal of Physiology - Endocrinology And Metabolism, vol.285, issue.1, pp.206-215, 2003.
DOI : 10.1152/ajpendo.00331.2002

M. Sandri, C. Sandri, A. Gilbert, C. Skurk, E. Calabria et al., Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy, Cell, vol.117, issue.3, pp.399-412, 2004.
DOI : 10.1016/S0092-8674(04)00400-3

T. Stitt, D. Drujan, B. Clarke, F. Panaro, Y. Timofeyva et al., The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors, Molecular Cell, vol.14, issue.3, pp.395-403, 2004.
DOI : 10.1016/S1097-2765(04)00211-4

C. Mcfarlane, E. Plummer, M. Thomas, A. Hennebry, M. Ashby et al., Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-??B-independent, FoxO1-dependent mechanism, Journal of Cellular Physiology, vol.296, issue.2, pp.501-514, 2006.
DOI : 10.1002/jcp.20757

F. Favier, H. Benoit, and D. Freyssenet, Cellular and molecular events controlling skeletal muscle mass in response to altered use, Pfl??gers Archiv - European Journal of Physiology, vol.99, issue.Pt 3, pp.587-600, 2008.
DOI : 10.1007/s00424-007-0423-z

X. Wang and C. Proud, The mTOR Pathway in the Control of Protein Synthesis, Physiology, vol.21, issue.5, pp.362-369, 2006.
DOI : 10.1152/physiol.00024.2006

D. Guertin, D. Stevens, C. Thoreen, A. Burds, N. Kalaany et al., Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals??that mTORC2 Is Required for Signaling to Akt-FOXO and PKC??, but Not S6K1, Developmental Cell, vol.11, issue.6, pp.859-871, 2006.
DOI : 10.1016/j.devcel.2006.10.007

J. Du, W. Mitch, X. Wang, and S. Price, Glucocorticoids Induce Proteasome C3 Subunit Expression in L6 Muscle Cells by Opposing the Suppression of Its Transcription by NF-kappa B, Journal of Biological Chemistry, vol.275, issue.26, pp.19661-19666, 2000.
DOI : 10.1074/jbc.M907258199

A. Durieux, R. Bonnefoy, T. Busso, and D. Freyssenet, In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage, The Journal of Gene Medicine, vol.6, issue.7, pp.809-816, 2004.
DOI : 10.1002/jgm.534

A. Durieux, R. Bonnefoy, C. Manissolle, and D. Freyssenet, High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator, Biochemical and Biophysical Research Communications, vol.296, issue.2, pp.443-450, 2002.
DOI : 10.1016/S0006-291X(02)00901-4

A. Peinnequin, C. Mouret, O. Birot, A. Alonso, J. Mathieu et al., Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green, BMC Immunology, vol.5, issue.1, p.3, 2004.
DOI : 10.1186/1471-2172-5-3

URL : https://hal.archives-ouvertes.fr/inserm-00407733

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-408, 2001.
DOI : 10.1006/meth.2001.1262

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

S. Duguez, L. Feasson, C. Denis, and D. Freyssenet, Mitochondrial biogenesis during skeletal muscle regeneration, American Journal of Physiology - Endocrinology And Metabolism, vol.282, issue.4, pp.802-809, 2002.
DOI : 10.1152/ajpendo.00343.2001

D. Taillandier, L. Combaret, M. Pouch, S. Samuels, D. Bechet et al., The role of ubiquitin???proteasome-dependent proteolysis in the remodelling of skeletal muscle, Proceedings of the Nutrition Society, vol.63, issue.2, pp.357-361, 2004.
DOI : 10.1079/PAR2004358

M. Gomes, S. Lecker, R. Jagoe, A. Navon, and A. Goldberg, Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy, Proceedings of the National Academy of Sciences, vol.98, issue.25, pp.14440-14445, 2001.
DOI : 10.1073/pnas.251541198

A. Koncarevic, R. Jackman, and S. Kandarian, The ubiquitin-protein ligase Nedd4 targets Notch1 in skeletal muscle and distinguishes the subset of atrophies caused by reduced muscle tension, The FASEB Journal, vol.21, issue.2, pp.427-437, 2007.
DOI : 10.1096/fj.06-6665com

A. Hishiya, S. Iemura, T. Natsume, S. Takayama, K. Ikeda et al., A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy, The EMBO Journal, vol.392, issue.3, pp.554-564, 2006.
DOI : 10.1038/sj.emboj.7600945

S. Baghdiguian, M. Martin, I. Richard, F. Pons, C. Astier et al., Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IB/NF-B pathway in limb-girdle muscular dystrophy type 2A, Nat Med, vol.5, pp.503-511, 1999.

S. Kandarian and R. Jackman, Intracellular signaling during skeletal muscle atrophy, Muscle & Nerve, vol.29, issue.2, pp.155-165, 2006.
DOI : 10.1002/mus.20442

M. Deyoung, P. Horak, A. Sofer, D. Sgroi, and L. Ellisen, Hypoxia regulates TSC1/2 mTOR signaling and tumor suppression through REDD1-mediated 14 3 3 shuttling, Genes & Development, vol.22, issue.2, pp.239-251, 2008.
DOI : 10.1101/gad.1617608

T. Magee, J. Artaza, M. Ferrini, D. Vernet, F. Zuniga et al., Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass, The Journal of Gene Medicine, vol.32, issue.9, pp.1171-1181, 2006.
DOI : 10.1002/jgm.946

S. Reisz-porszasz, S. Bhasin, J. Artaza, R. Shen, I. Sinha-hikim et al., Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin, American Journal of Physiology - Endocrinology And Metabolism, vol.285, issue.4, pp.876-888
DOI : 10.1152/ajpendo.00107.2003

R. Jackman and S. Kandarian, The molecular basis of skeletal muscle atrophy, AJP: Cell Physiology, vol.287, issue.4, pp.834-843, 2004.
DOI : 10.1152/ajpcell.00579.2003

H. Gilson, O. Schakman, L. Combaret, P. Lause, L. Grobet et al., Myostatin Gene Deletion Prevents Glucocorticoid-Induced Muscle Atrophy, Endocrinology, vol.148, issue.1, pp.452-460, 2007.
DOI : 10.1210/en.2006-0539

S. Temparis, M. Asensi, D. Taillandier, E. Aurousseau, D. Larbaud et al., Attaix D 1994 Increased ATP-ubiquitindependent proteolysis in skeletal muscles of tumor-bearing rats, Cancer Res, vol.54, pp.5568-5573

M. Sandri, Signaling in Muscle Atrophy and Hypertrophy, Physiology, vol.23, issue.3, pp.160-170, 2008.
DOI : 10.1152/physiol.00041.2007

S. Busquets, C. Garcia-martinez, B. Alvarez, N. Carbo, F. Lopez-soriano et al., Calpain-3 gene expression is decreased during experimental cancer cachexia, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1475, issue.1, pp.5-9, 2000.
DOI : 10.1016/S0304-4165(00)00050-7

H. Ueyama, T. Kumamoto, S. Fujimoto, T. Murakami, and T. Tsuda, Expression of three calpain isoform genes in human skeletal muscles, Journal of the Neurological Sciences, vol.155, issue.2, pp.163-169, 1998.
DOI : 10.1016/S0022-510X(97)00309-2

L. Feasson, D. Stockholm, D. Freyssenet, I. Richard, S. Duguez et al., Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle, The Journal of Physiology, vol.20, issue.1, pp.297-306, 2002.
DOI : 10.1113/jphysiol.2002.018689

D. Stockholm, C. Barbaud, S. Marchand, F. Ammarguellat, D. Barritault et al., Studies on Calpain Expression during Differentiation of Rat Satellite Cells in Primary Cultures in the Presence of Heparin or a Mimic Compound, Experimental Cell Research, vol.252, issue.2, pp.392-400
DOI : 10.1006/excr.1999.4628

H. Tang, W. Cheung, F. Ip, and N. Ip, Identification and Characterization of Differentially Expressed Genes in Denervated Muscle, Molecular and Cellular Neuroscience, vol.16, issue.2, pp.127-140, 2000.
DOI : 10.1006/mcne.2000.0864

T. Tsujinaka, J. Fujita, C. Ebisui, M. Yano, E. Kominami et al., Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice., Journal of Clinical Investigation, vol.97, issue.1, pp.244-249, 1996.
DOI : 10.1172/JCI118398

I. Kramerova, E. Kudryashova, G. Venkatraman, and M. Spencer, Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway, Human Molecular Genetics, vol.14, issue.15, pp.2125-2134, 2005.
DOI : 10.1093/hmg/ddi217

M. Bartoli, J. Poupiot, A. Vulin, F. Fougerousse, L. Arandel et al., AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not ??-sarcoglycan deficiency, Gene Therapy, vol.7, issue.9, pp.733-740, 2007.
DOI : 10.1038/sj.gt.3302928

A. Sekulic, C. Hudson, J. Homme, P. Yin, D. Otterness et al., A direct linkage between the phosphoinositide 3-kinase- AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells, Cancer Res, vol.60, pp.3504-3513, 2000.

S. Cheng, L. Fryer, D. Carling, and P. Shepherd, Thr2446 Is a Novel Mammalian Target of Rapamycin (mTOR) Phosphorylation Site Regulated by Nutrient Status, Journal of Biological Chemistry, vol.279, issue.16, pp.15719-15722, 2004.
DOI : 10.1074/jbc.C300534200

R. Peterson, P. Beal, M. Comb, and S. Schreiber, FKBP12-Rapamycin-associated Protein (FRAP) Autophosphorylates at Serine 2481 under Translationally Repressive Conditions, Journal of Biological Chemistry, vol.275, issue.10, pp.7416-7423, 2000.
DOI : 10.1074/jbc.275.10.7416

C. Mammucari, G. Milan, V. Romanello, E. Masiero, R. R. et al., FoxO3 Controls Autophagy in Skeletal Muscle In Vivo, FoxO3 controls autophagy in skeletal muscle in vivo, pp.458-471, 2007.
DOI : 10.1016/j.cmet.2007.11.001

J. Zhao, J. Brault, A. Schild, P. Cao, M. Sandri et al., FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells, Cell Metabolism, vol.6, issue.6, pp.472-483, 2007.
DOI : 10.1016/j.cmet.2007.11.004