
HAL Id: inserm-00380613
https://inserm.hal.science/inserm-00380613

Submitted on 4 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two PEST-like motifs regulate Ca2+/calpain-mediated
cleavage of the CaVbeta3 subunit and provide important

determinants for neuronal Ca2+ channel activity.
Alejandro Sandoval, Norma Oviedo, Abir Tadmouri, Traudy Avila, Michel de

Waard, Ricardo Felix

To cite this version:
Alejandro Sandoval, Norma Oviedo, Abir Tadmouri, Traudy Avila, Michel de Waard, et al.. Two
PEST-like motifs regulate Ca2+/calpain-mediated cleavage of the CaVbeta3 subunit and provide
important determinants for neuronal Ca2+ channel activity.. European Journal of Neuroscience,
2006, 23 (9), pp.2311-20. �10.1111/j.1460-9568.2006.04749.x�. �inserm-00380613�

https://inserm.hal.science/inserm-00380613
https://hal.archives-ouvertes.fr


Eur J Neurosci. Author manuscript

Page /1 12

Two PEST-like motifs regulate Ca2+/calpain-mediated cleavage of the CaVβ3

subunit and provide important determinants for neuronal Ca2+ channel
activity

  Sandoval Alejandro  1  2 ,   Oviedo Norma  1  3 ,   Tadmouri Abir  4 ,   Avila Traudy  1 ,   De Waard Michel  4 ,   Felix Ricardo  5 *

Department of Physiology, Biophysics and Neuroscience   1 CINVESTAV-IPN, Cinvestav, Mexico City,MX

School of Medicine FES Iztacala   2 University of Mexico, MX

Department of Molecular Biology and Biotechnology    3 Biomedical Research Institute, University of Mexico, MX

Canaux calciques , fonctions et pathologies     4 INSERM : U607, CEA : DSV/IRTSV, Universit  Joseph Fourier - Grenoble IÃ© , 17, rue des
martyrs 38054 Grenoble,FR 

Department of Cell Biology   5 CINVESTAV-IPN, Mexico City,MX

* Correspondence should be adressed to: Ricardo Felix <rfelix@fisio.cinvestav.mx>

Abstract

Increase in intracellular Ca  due to voltage-gated Ca  (Ca ) channel opening represents an important trigger for a number of2+ 2+
V

second-messenger mediated effects ranging from neurotransmitter release to gene activation. Ca  entry occurs through the principal2+

pore-forming protein, but several ancillary subunits are known to more precisely tune ion influx. Among them, the Ca  subunits areVβ

perhaps the most important given that they largely influence the biophysical and pharmacological properties of the channel. Notably,

several functional features may be associated with specific structural regions of the Ca  subunits emphasizing the relevance ofVβ

intramolecular domains in the physiology of these proteins. In the current report, we show that Ca  contains two PEST motifs andVβ3

undergoes Ca -dependent degradation which can be prevented by the specific calpain inhibitor calpeptin. Using mutant constructs2+

lacking the PEST motifs, we present evidence that they are necessary for the cleavage of Ca  by calpain. Furthermore, the deletionVβ3

of the PEST sequences did not affect the binding of Ca  to the ionconducting Ca 2.2 subunit, and when expressed in HEK-293 cells,Vβ3 V

the PEST motif-deleted Ca  significantly increased whole-cell current density and retarded channel inactivation. Consistent withVβ3

this observation, calpeptin treatment of HEK-293 cells expressing wild-type Ca  resulted in an increase in current amplitude.Vβ3

Together, these findings suggest that calpainmediated Ca  proteolysis may be an essential process for Ca  channel functionalVβ3
2+

regulation.
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Introduction

The major function of the voltage-gated Ca  (Ca ) channels is to convert changes in membrane potential into an intracellular calcium2+
V

(Ca  ) signal. Transient rises of Ca   trigger or regulate diverse intracellular events, including metabolic processes, muscle contraction,2+
i

2+
i

secretion of hormones and neurotransmitters, cell differentiation and gene expression. Several types of Ca  channels have beenV

characterized and designated L, N, P/Q, R, and T. These channel types can be grouped into two major functional classes: high voltage- and

low voltage-activated channels (HVA and LVA, respectively). The HVA Ca  channel permeation pathway is formed by its  subunit,V α1

which is encoded by a family of 7 genes ( ). The current through these channels may be modulated by distinctCatterall ., 2003et al

structural modifications including the association with auxiliary subunits: the disulfide-linked Ca , the intracellular Ca  and theVα2δ Vβ

transmembrane Ca  subunits, which also represent gene families ( ).Vγ Arikkath and Campbell, 2003

Among the auxiliary proteins, the Ca  subunit plays a crucial role in the formation and behavior of all functional HVA Ca  channels.Vβ V

Four different types of Ca  subunits (  to ) have been identified, each with multiple splicing variants ( ; Vβ β1 β4 Walker and De Waard, 1998

; ). The Ca  proteins do not cross the plasma membrane, but can directly interact with the CaArikkath and Campbell, 2003 Dolphin, 2003 Vβ

 subunit and are important for trafficking and expression of the kinetic properties of the channel ( ; Vα1 Walker and De Waard, 1998

; ). The physiological importance of the Ca  subunits is demonstrated by the severeArikkath and Campbell, 2003 Dolphin, 2003 Vβ
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phenotypes of mutant and knockout mice ( ; ; McEnery ., 1999; ). In-depthGregg ., 1996et al Burgess ., 1997et al et al Ball ., 2002et al

understanding of how the Ca  auxiliary subunits modulate the activity of the ion-conducting Ca  subunits is essential for insights intoVβ Vα1

the operation of HVA Ca  channels in both normal and disease states.V

Detailed structural modeling of Ca  subunits has proposed five discrete domains homologous to the membrane-associated guanylateVβ

kinase (MAGUK) protein family. Structural models have been proposed for the type 3 src-homology (SH3), and guanylate kinase

(GK)-like domains ( ; ; ; ; ; ;).Hanlon ., 1999et al Opatowsky ., 2003et al 2004 McGee ., 2004et al Takahashi ., 2004et al Chen ., 2004et al

SH3 and GK domains are both necessary to recapitulate full modulatory effects of Ca  on the pore-forming Ca  protein (Vβ Vα1 Takahashi et

; ). Likewise, the C-terminus of Ca  is associated to membrane targeting properties ( )., 2004al McGee ., 2004et al Vβ Bogdanov , 2000et al.

and the N-terminus appears to be involved in the regulation of channel inactivation ( ; ; Olcese ., 1994et al Restituito ., 2000et al Stotz .,et al

). Site-directed mutagenesis of conserved serine residues in consensus sites for protein kinase phosphorylation suggests a role of2004

phosphorylation in tuning the functional properties and pharmacological sensitivities of the Ca  subunits ( ; Vβ De Waard ., 1994et al

; ).Gerhardstein ., 1999et al Kohn ., 2003et al

These studies point to the importance of intramolecular domains in the physiology of the Ca  subunits. In the current report, we showVβ

that Ca  contains two PEST-like sequences (potential signals for rapid protein degradation), one in the SH3 domain and another in theVβ3

C-terminal end of the protein. These sequences are sensitive  to low concentrations of calpain (a Ca -dependent protease). Wein vitro 2+

further found that Ca  mutants lacking the PEST sequences induced an increase in whole-cell Ca  current amplitude compared toVβ3
2+

wild-type Ca , and caused a change in channel inactivation kinetic properties. Our findings suggest that Ca  proteolytic cleavage mayVβ3 Vβ3

be an essential process for Ca  channel functional regulation.2+

Materials and Methods
Cell culture and recombinant Ca  channel expressionV

Human embryonic kidney (HEK-293) cells were grown in DMEM-high glucose supplemented with 10  horse serum, 2 mM%
L-glutamine, 110 mg/l sodium pyruvate and 50 g/ml gentamycin, at 37 C in a 5  CO /95  air humidified atmosphere. After splitting theμ ° % 2 %

cells on the previous day and seeding at ~60  confluency, cells were transfected using the Lipofectamine Plus reagent (Gibco BRL) with%

1.2 g plasmid cDNA encoding the rabbit brain N-type Ca  channel Ca 2.2 pore-forming subunit (formerly ; GenBank accessionμ 2+
V α1B

number D14157) ( ) in combination with 1.2 g cDNA coding the rat brain Ca -1 (M86621) ( ), andFujita ., 1993et al μ Vα2δ Kim ., 1992et al

1.2 g cDNA of the rat brain Ca  (M88751) ( ) or its mutants (see below). For electrophysiology, 0.36 g of aμ Vβ3 Castellano ., 1993et al μ

plasmid cDNA encoding the green fluorescent protein (GFP; Green-Lantern; Gibco/BRL) was added to the transfection mixture to select

positively transfected cells.

Deletions of Ca   PEST regionsV β3

The different deletions in the Ca  subunit were obtained by the QuikChange XL-mutagenesis kit QCM (Stratagene), following a twoVβ3

stage PCR protocol for deletions (Wang and Malcolm, 2001). The PEST regions 1 and 2 (amino acid residues 24 to 37 and 397 to 411,

respectively) were subjected to deletion through duplex oligonucleotides that comprised the adjacent nucleotidic sequences to these

regions. The forward oligonucleotides were 5 -GTTCAGCCGACTCTACACCAGAGAGTGCCCGGCGAGAAGTGG-3  and 5′ ′ ′
-GAGGAGCATTCACCCCTGGAGCAGGCCTGGACCGGATCTTCACAG-3  for PEST1 and PEST2, respectively. Reverse′
oligonucleotides were complementary to these sequences. In step I of the procedure, two extension reactions were performed in separate

tubes, one containing the forward primer and the other including the reverse and complementary primer. Five polymerization cycles were

conducted at 95 C 30 s, 55 C 1 min, and 68 C 14 min. After that, both reactions were mixed and the standard QCM procedure continued° ° °
for 16 cycles. In addition to the single PEST deletions, a double deletion cDNA clone was obtained from the first plasmid harboring the

PEST1 deletion in combination with the duplex oligonucleotides for the PEST2 deletion. Deletions were confirmed by either restriction

endonuclease analysis (using endonucleases III and I) or automatic sequencing using an ABI PRISM 310 sequence analyzerHind Xba

(Perkin-Elmer Applied Biosystems) and primers for the T7 and SP6 promoters.

In vitro transcription and translation

 transcription/translation assays were performed using the TNT  Quick Coupled transcription/translation system kitIn vitro ™

(Promega). Briefly, 2 g of plasmid DNA was added to 41 l of TNT  quick master Mix containing 1 l of S -methionine (1000μ μ ™ μ [35 ]
Ci/mmol) at 2.5 mCi/ml (Amersham Pharmacia Biotech) to a final volume of 50 l and incubated at 30 C for 120 min. Proteins wereμ º
subjected to SDS-PAGE (see below) and labeled proteins were detected by film exposure for 48 h.

SDS-PAGE and Western blotting
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Microsomes from transfected HEK-293 cells were obtained as described elsewhere ( ; ), andFelix ., 1997et al Gurnett ., 1997et al

proteins were separated on 10  sodium dodecyl sulfate (SDS)- polyacrylamide gels according to the method of . Samples% Laemmli (1970)

were heated at 90 C for 5 min and 100 g of protein/slot were loaded on gels. Proteins were blotted onto nitrocellulose membranes and° μ
were developed with enhanced chemiluminescence as previously described ( ; ). The anti-CaFelix ., 1997et al Gurnett ., 1997et al Vβ3

specific antibody was a sheep polyclonal antibody (1:1000 dilution; Sh0049), and the secondary antibody was a rabbit anti-sheep IgG

horseradish peroxidase (Zymed) used at a dilution of 1:4000.

Pull-down experiments

As mentioned earlier, S -labelled proteins (wild-type , P1, P2 and P1 2) were expressed  using a coupled[35 ] β3 β3Δ β3Δ β3Δ – in vitro

transcription/translation system as indicated by the manufacturer (TNT  Kit, Promega). For pull-down assays, 75 l of hydrated™ μ
glutathione-agarose beads (Sigma) were incubated respectively with 20 g of GST fused to AID  (Alpha1 Interaction Domain of Ca 2.2; μ 2.2 v

) or of GST alone for 2 hours at 4 C. In order to saturate non specific free sites, GST-AID  and GST beads wereSandoz , 2001et al. ° 2.2

incubated with 0.1 mg/ml BSA overnight at 4 C. S -labelled proteins were incubated with the beads for 1 h at room temperature. The° [35 ]
beads were then washed with PBS three times and the proteins, bound to beads, were eluted in denaturing buffer and analyzed on sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) by autoradiography.

Electrophysiology

Forty eight hours after transfection, cells expressing the GFP reporter gene were subjected to the whole-cell mode of the patch clamp

technique ( ). In brief, Ba  currents through Ca  channels were recorded with an Axopatch 200B amplifier (AxonHamill ., 1981et al 2+ 2+

Instruments) and acquired on-line using a Digidata 1320A interface with pClamp8 software (Axon Instruments). After establishing the

whole-cell mode, capacitive transients were canceled with the amplifier. Currents were obtained from a holding potential (HP) of 80 mV−
and by applying test pulses every 20 s. Leak and residual capacitance currents were subtracted on-line by a P/4 protocol. Current signals

were filtered at 2 kHz (internal 4 pole Bessel filter) and digitized at 5.71 kHz. Membrane capacitance (C ) was determined as describedm

previously ( ) and used to normalize currents. The bath recording solution contained (in mM) 10 BaCl , 125 TEA-Cl, 10Avila ., 2004et al 2

HEPES and 10 glucose (pH 7.3). The internal solution consisted of (in mM) 110 CsCl, 5 MgCl , 10 EGTA, 10 HEPES, 4 Na-ATP and 0.12

GTP (pH 7.3). Experiments were performed at room temperature (~25 C).°

Pulse chase and immunoprecipitation experiments

6 cm diameter dishes with 40  confluent HEK-293 cells were transfected with cDNA encoding the wild-type Ca  or its PEST% Vβ3 Δ

mutants. 24 hours later, the protein labeling condition was set by incubating the cells for 30 min in methionine- and cysteine-free DMEM

supplemented with 5  fetal calf serum (FCS; starvation period). Labeling was induced by adding 500 Ci S -L-methionine and 2 mM% μ [35 ]
L-cysteine to each plate for 40 min at 37 C. To remove radioactive media, dishes were washed with PBS. Subsequently, normal DMEM°
media supplemented with 10  FCS was added to plates (except the t  0 sample, which represents the start time of the chase). At t  24 h,% = =
all plates were washed with ice-cold PBS. Cells were then scraped in 10 ml ice-cold PBS and transferred to a tube to remove the

supernatant by centrifugation. Labeled cells were lysed with 1 ml PBS supplemented with 0.5  triton X-100 and a cocktail of protease%
inhibitors (complete, Mini, EDTA-free, Roche). Lysates were sonicated and centrifuged at 1,500 rpm for 15 min. The supernatants were

used for immunoprecipitation experiments. A total of 200 g proteins of each sample were incubated with anti-Ca  polyclonal IgG for 1μ Vβ3

hr at room temperature. This polyclonal antibody was described elsewhere ( ), but was raised against the full-lengthBichet , 2000et al.

sequence of Ca . Subsequently, the Ca -IgG complex were immobilized by Protein A sepharose beads. Eluted proteins were thenVβ3 Vβ3

loaded on a 12  SDS-PAGE. After protein separation, the gel was treated for 30 min with a fixation solution (50  methanol, 10  acetic% % %
acid) and 30 min with a solution of 10  glycerol, before a 24 hr autoradiography exposure.%

Data analysis

The data are given as mean  S.E. Statistical differences between two means were determined by Student s  tests ( <0.05). Current± ’ t P

inactivation was fitted with single exponential equations of the form:  exp( / )  , where  is the initial amplitude (pA),  is time (ms),A × −t τ + c A t

 is the time constant for inactivation and  is a constant.τ c

Results

Although important progresses in the structure-function relationship of the Ca  subunits have been made recently (Vβ Richards .,et al

), almost nothing is known about the mechanism and determinants of recognition for proteolytic degradation of these proteins. In this2004

context, PEST domains are short sequences (10 60 residues) enriched in proline (P), glutamic/aspartic (E), serine (S) and threonine (T)–
residues, found in many short-lived eukaryotic proteins that play a role in their degradation ( ). Using theRechsteiner and Rogers, 1996

PESTFind algorithm (available at the URL https://emb1.bcc.univie.ac.at/toolbox/) we found one conserved PEST sequence (N-terminal;
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PEST1) and one variable (C-terminal; PEST2) PEST sequence in the Ca  proteins. In the rat brain Ca  subunit, the PEST1 regionVβ Vβ3

comprises amino acid residues 24 to 37, while PEST2 consists of amino acid residues 397 to 411 ( ). PEST1 scored 9.47 andFig. 1A +
PEST2 11.52, respectively. These findings prompted us to investigate the importance of the PEST sequences in the susceptibility of Ca+ Vβ

 to proteolytic degradation. It is worth mentioning that the Ca  subunit is the major Ca  constituent of the Ca 2.2 channel complex (3 Vβ3 Vβ V

), which plays a pivotal role in regulating neurotransmitter release and in controlling endocrine secretion.Scott , 1996et al.

By using a two stages PCR protocol (see Methods section), we first created two single ( P1 and P2) and one double ( P1 2) PESTΔ Δ Δ –
domain deletions in the Ca  sequence. The plasmids containing the full-length sequence and the constructs harboring the deletions wereVβ3

initially examined using a cell-free transcription/translation system. All the cDNA clones directed the synthesis  of polypeptides ofin vitro

the expected molecular weights ( ). Next, the wild-type Ca  and its three PEST-deleted versions were expressed in HEK-293 cellsFig. 1B Vβ3

and analyzed by immunoblotting using polyclonal antibodies directed against a fusion protein of the C- terminus of Ca  (Vβ3 Liu ., 1996et al

; ). This analysis revealed a single immunoreactive protein band with a molecular mass of ~58 kDa in microsomes fromScott ., 1996et al

transfected cells, which corresponds to the full-length Ca  ( ). The antibodies also recognized the PEST-truncated proteins byVβ3 Fig. 1C

showing shifts in the mobility from 58 kDa down to ~50 55 kDa on SDS-PAGE 10  gels ( ). These findings, combined with the– % Fig. 1C

lack of endogenous Ca  subunit, make the HEK-293 cell line a good cell model to investigate the importance of the PEST sequences inVβ3

Ca  function.Vβ3

We next questioned whether the PEST domains of Ca  were molecular substrates for  degradation by Ca -dependentVβ3 in vitro 2+

endogenous proteases. This was tested through a comparative analysis of Ca -mediated proteolysis using the Ca  mutant lacking both2+
Vβ3

PEST regions ( P1 2) and the full-length Ca  subunit as substrates.  shows that recombinant Ca  expressed in HEK-293Δ – Vβ3 Figure 2A Vβ3

cells was partially cleaved by endogenous proteases in the presence of CaCl . Though significant degradation was observed, proteolysis2

was not complete; this could be explained by the fact that besides Ca  no other agent was used to induce proteolysis. In addition,2+

endogenous molecules that activate proteolytic activity (by reducing the Ca  requirement, for instance), may be lacking in the cell2+

homogenates employed in these assays. Hence, when Ca  was present, the specific anti-Ca  antibody detected additional bands that2+
Vβ3

should correspond to Ca  fragments following the cleavage of the full-length Ca  by Ca -dependent endogenous proteases. AsVβ3 Vβ3
2+

expected, this proteolytic break-down of Ca  was prevented by adding EDTA to the incubation buffer used for the experiments. UnlikeVβ3

the full-length Ca  subunit, the P1 2 mutant was stable in the presence of Ca  and did not undergo proteolysis in theVβ3 Δ – 2+

EDTA-containing buffer ( ). Likewise, examination of gels stained with Coomassie Blue provided initial evidence that aFig. 2A

~58,000-Da polypeptide (presumably the Ca ) is susceptible to Ca /calpain-induced proteolysis. Hence, microsomes of HEK-293 cellsVβ 2+

expressing the Ca  subunit were analyzed on 10  SDS-PAGE stained with Coomassie Blue. As shown in , a 20 min treatmentVβ3 % Figure 2B

of the microsomes with -calpain produced a dose-dependent change in the levels of the ~58 kDa protein in the gels. In contrast, the levelsμ

of the ~58 kDa polypeptide were unaffected when the Ca  chelator EDTA or when the calpain inhibitor calpeptin were included in the2+

assay. These data corroborate that the HEK-293 cell line possesses basal calpain activity ( ), and suggest that theShimada , 2005et al.

wild-type Ca  subunit is a target of this protease.Vβ3

We next sought to determine whether the PEST regions found in Ca  were substrates of calpain. To this end, proteolysisVβ3

experiments of wild-type and mutant Ca  proteins were conducted according to a protocol described elsewhere ( ).Vβ3 Shumway , 1999et al.

Briefly, calpain activity was indirectly determined by assessing the extent of Ca -induced degradation of Ca  P1 2 mutant subunits2+
Vβ3 Δ –

compared to the wild-type protein degradation ( ). Inhibitors such as EDTA and calpeptin were used in the assay to ascertain theFig. 2C

specificity of calpain activity. As described above, incubation with Ca  (750 M) caused degradation of Ca  which was prevented in2+ μ Vβ3

the presence of EDTA or calpeptin. On the other hand, examination of the Ca  P1 2 mutant by Western blot evidenced that this proteinVβ3 Δ –

does not undergo endogenous Ca /calpain-induced proteolytic cleavage, illustrating the importance of the PEST sequences ( ).2+ Fig. 2C

As a more direct test of the contributing role of the PEST domains as calpain substrates, we examined the proteolytic profile of the Ca

 subunit mutants in which the PEST sequences had been removed. First, Ca  was produced by  translation in the rabbitVβ3 Vβ3 in vitro

reticulocyte lysate, then mixed with increasing concentrations of calpain in the presence of Ca  to activate the protease. The results2+

indicated that the  translated Ca  protein is indeed susceptible to exogenous calpain breakdown in a dose- and Ca -dependentin vitro Vβ3
2+

manner. Notably, calpain concentrations of ~10 nM were sufficient to significantly degrade the  translated Ca , and this effectin vitro Vβ3

was prevented when EDTA (consistent with the Ca  requirement of calpain) or the calpain inhibitor calpeptin were present. Of note, these2+

experiments were performed adding exogenous calpain, in contrast to those in which the protein is degraded showing two additional bands

(where proteolysis was mediated by endogenous Ca  dependent proteases; ). We next questioned whether either the N- or the2+ Fig. 2A

C-terminal PEST domains of Ca  were molecular determinants for the efficiency of  degradation by calpain. Recombinant CaVβ3 in vivo Vβ3

proteins lacking amino acid residues 24 to 37 ( P1) and 397 to 411 ( P1 2) expressed in HEK-293 cells were subjected to increasingΔ Δ –

concentrations of -calpain and probed by Western blot. Though at a concentration of 90 nM (in the presence of 750 M Ca ), the P1 2μ μ 2+ Δ –
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mutant proteins were almost completely degraded, proteolytic breakdown of these proteins seemed to be reduced in comparison to the

full-length Ca  at equal concentrations of calpain (not shown). Despite the fact that the internal concentration is unknown, we surmiseVβ3

that a low concentration of the protease, in conjunction with the over-expression of our protein, explains that the effect is only partial. In

contrast, when exogenous calpain is added, the proteolysis seems to be more potent. These results suggest that the PEST sequences within

the Ca  subunit promote its degradation by -calpain. In line with this, when the double PEST deletion mutant protein ( P1 2) wasVβ3 μ Δ –

incubated with calpain, we detected a significant decline in proteolysis relative to that of the single mutants. Following incubation with 50

nM calpain some of the input protein still remained ( ). Taken together, these data suggest that deletion of the PEST sequencesFig. 2D

produced Ca  subunits that were more resistant to cleavage by calpain than the full-length protein and provide evidence that the extentVβ3

of proteolysis depends on the presence of the PEST sequences.

In order to exclude the possibility that the reduced proteolytic sensitivity shown by the P1 2 mutant may be the result of grossΔ –
structural alterations in the Ca  protein caused by the amino acids deletion, we next tested whether the PEST mutated versions of CaVβ3 Δ Vβ

 could directly associate with the Ca  subunit through the Alpha1 Interaction Domain (AID), the main channel structure involved in the3 Vα1

Ca -Ca  subunit interaction. To this end, we used a GST-fusion protein encoding a short fragment of the intracellular I-II loop of theVα1 Vβ

Ca 2.2 subunit carrying the AID region (GST-AID ), and compared its binding to the  synthesized S -  wild-type and mutantV 2.2 in vitro [35 ] β3

proteins ( ). As can be seen, all of the S -Ca  subunits maintained the ability to bind the GST-AID  fusion protein indicatingFig. 3 [35 ] Vβ3 2.2

that the deletions in the PEST regions do not affect the association of these subunits to the purified GST fusion protein.

To extend these findings, we next investigated the functional repercussion of the PEST deletions in Ca  by electrophysiologicalVβ3

recording. The whole-cell mode of the patch clamp technique was used to study the macroscopic Ba  currents (  ) through recombinant2+ I Ba

N-type Ca  channels (composed of Ca 2.2 and -1) in HEK-293 cells transiently expressing wild-type Ca  or its mutants. V V α2δ Vβ3 Figure 4A

shows representative current traces recorded during depolarizing voltage steps to 10 mV from a holding potential of 80 mV. Control+ −
experiments carried out using cells transfected with the wild-type Ca  showed that the average current density (peak current amplitudeVβ3

divided by the respective value of C ) was -141  24 pA/pF. Recordings performed in cells transfected with the PEST deletions revealedm ±

an up-regulation of the macroscopic Ba  current. As can be seen in ,   density measured at 10 mV was significantly2+ Figure 4B I Ba +

increased (~60 ) in cells expressing the double PEST deletion ( P1 2). Similar results, with nearly the same level of   up-regulation,% Δ – I Ba

were also observed in cells expressing the single PEST deletions ( P1 and P2).Δ Δ

The above described data are further illustrated in , which shows the   density as a function of the voltage step inFigure 4C I Ba

transfected cells. These current density-voltage relationships indicate that   is activated at potentials positive to > 20 mV, and reach itsI Ba −

peak at potentials close to 10 mV. The stimulatory effects of PEST deletions on current densities were observed at almost all potentials+
explored. Interestingly, we noticed that PEST deletions also altered the macroscopic kinetic properties. Normalized currents obtained from

either control or cells expressing Ca  mutant subunits showed that the temporal course of the current traces was different ( ).Vβ3 Fig. 4A

Though neither the time to peak nor the time constant for the activation of the current were apparently modified (data not shown), the time

constant for the inactivation ( ) and the percentage of current remaining after 140 ms activating pulses were significantly differentτinact

between control and cells expressing the mutant subunits ( ). It is worth mentioning that the use of Ba  as the charge carrier inFig. 4D 2+

these experiments may reduce Ca - dependent inactivation. Together, these results suggest that the PEST sequences may be important for2+

determining also the effects of Ca  subunits on channel voltage-dependent inactivation properties. Alternatively, it is also possible thatVβ

kinetic modifications may be induced by PEST1 deletion through a non specific structural alterations of the Ca  subunit. On the otherVβ3

hand, the PEST2 region is less likely to be involved in such a non specific effect since previous studies have demonstrated that the third

variable region (V3) of the protein (where PEST2 is located) may not be necessary for inactivation ( ; Wittemann ., 2000et al Opatowsky et

).., 2003al

Given that the deletion of the PEST sequences in Ca  resulted in mutant proteins more resistant to calpain cleavage ( ) thatVβ3 Fig. 2

enhanced functional expression levels of Ca  channels ( ), we speculated that the calpain system may be responsible for theV Fig. 4C

regulated degradation of the Ca  subunit . Hence, the observed increase in current density through Ca  channels containingVβ3 in vivo V

mutant subunits may be the result of an increased stability of these proteins in intact cells. If this was the case, inhibition of calpain activity

 would decrease Ca  wild-type turnover enhancing the availability of Ca  and promoting the trafficking of the channels to thein vivo Vβ3 Vβ3

plasma membrane. Therefore, in order to see whether calpain degrades Ca  under physiological conditions, we treated the HEK-293 cellVβ3

line cultures with a specific calpain inhibitor. Traces in  exemplify representative records of membrane currents throughFigure 5A

recombinant channels of the Ca 2.2/ -1 class co-expressing wild-type Ca  obtained in untreated (control) HEK-293 cells and in cellsV α2δ Vβ3

exposed to calpeptin (25 M). As can be seen, there was no significant change in whole cell   in cells treated for 3 h with the inhibitor.μ I Ba

In contrast, longer exposure (6 h) to calpeptin resulted in a significant increase in   density ( ). On the other hand, there was noI Ba Fig. 5B

significant effect on   density in HEK-293 cells expressing recombinant channels that included the Ca  PEST mutant subunits afterI Ba Vβ3

calpeptin treatment ( ), consistent with the idea that calpain proteolysis affects Ca  activity through the presence of PESTFigs. 5C and D Vβ3

sequences. Taken as a whole, the results presented above suggest that calpain may be a physiological regulator of Ca  protein turnover.Vβ3
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Lastly, as mentioned earlier, our data showed that the deletion of PEST like sequences decreases the degradation of Ca  subunit Vβ3 in

 ( ), we therefore aimed to reproduce these results . In order to determine whether the PEST region deletions affectedvitro Fig. 2 in vivo

protein stability, half-lives of the wild-type Ca  subunit and its mutants were measured in metabolic pulse-chase experiments ( ). InVβ3 Fig. 6

these experiments, HEK-293 cells transiently transfected with the cDNA encoding the Ca  subunits were labeled for 30 min with SVβ3 [35 ]

-methionine/cysteine and chased with unlabeled methionine and cysteine. After 24 h of chase, proteins were immunoprecipited with a

polyclonal anti-  raised against the full-length Ca  sequence to reveal most of the proteolytic fragments. As can be seen, the wild-typeβ3 Vβ3

protein was synthesized as a band with a molecular mass of ~58 kDa which underwent progressive degradation (~85  was degraded after%
24 h). This result is consistent with the idea that proteins containing PEST sequences usually have short half lives, and is also consistent

with our finding that Ca  may be the target of proteolytic breakdown under physiological conditions. With the PEST mutants,Vβ3 Δ

however, less degradation occurred during the 24 h of chase (~28, ~32 and 45  for P1 2, P1 and P2, respectively). This finding% Δ – Δ Δ
suggests that the elevated surface expression of the channels containing the Ca  mutant proteins may be related with enhanced proteinVβ3

halflife.

Discussion

A number of proteins related to the metabolism or functions of intracellular Ca  have been reported to be substrates for calpain2+

including Ca  channels. Initially, the demonstration that the Ca  subunit was sensitive to calpain suggested a possible mechanism forV Vαl

regulation of Ca  channel function. In the skeletal muscle, the C-terminal domain of the Ca 1.1 subunit is sensitive to proteolysis by V Vα μ

-calpain ( ). This proteolytic cleavage is thought to remove a major site of phosphorylation providing a mechanism forDe Jongh ., 1994et al

modifying the cAMP-dependent regulation of L-type Ca  channels. In addition, calpain proteolysis has been shown to affect the2+

functional activity of Ca  channels. In patch clamp studies, Ca  currents decline progressively due to rundown  which depends on theV
2+ “ ”

intracellular Ca  concentration. This led to the proposal that Ca  channels could be degraded by a Ca -dependent protease. Interestingly,2+
V

2+

Ca  current rundown in myocytes has been shown to be accelerated by calpain and retarded by the physiological calpain inhibitor2+

calpastatin, suggesting that these proteins may be involved in the regulation of channel activity and/or turnover ( ; Belles ., 1988et al

).Romanin ., 1991et al

At first glance, the first PEST region which is highly conserved across species and Ca  subunits appears of particular interest. TheVβ

last few amino acids of this region contribute to an alpha helix that precedes the beta strands of the SH3 domain in several crystal

structures of Ca  ( ; ). Hence, if conserved sequence mediates conserved function, theVβ2a Opatowsky ., 2004et al Van Petegem ., 2004et al

findings for Ca  might be generalized to the entire family of Ca  subunits. In addition, as we documented in the Results section, bothVβ3 Vβ

PEST regions showed modulatory effects on the functional expression of neuronal recombinant Ca  channels.V

In the present work, we show that calpain proteolysis may also affect the Ca  auxiliary subunit, providing a novel mechanism forVβ3

modifying the regulation of Ca  channels. As mentioned earlier, it has been suggested that calpain may cleave proteins near regionsV

containing PEST sequences ( ). It is proposed that these regions increase the local Ca  concentration and, inRechsteiner and Rogers, 1996 2+

turn, activate calpain. Analysis of the Ca  sequence using the PEST-Find computer program revealed two PEST-like domains in theVβ3

protein ( ). Notably, though the presence of the PEST regions in the sequences of the Ca  subunits and their possible roles inFig. 1A Vβ

subunit degradation was suggested initially several years ago ( ; ), their physiological relevanceRuth ., 1989et al Perez- Reyes ., 1992et al

remain virtually unexplored. It is worth mentioning that proteins containing PEST sequences typically have short half lives (~2 h) in intact

cells compared with most other proteins (>24 hours). In these proteins, removal or disruption of the PEST sequence increases the half life

of the protein while insertion or creation of a new PEST sequence within a PEST sequence free protein decreases this half life.

Interestingly, it has been shown that the recombinant Ca  subunit, when expressed alone in a mammalian cell line, is rapidly turned overVβ3

(2 6 h) ( ). In contrast to what we observed for the recombinant Ca  used in this study ( ), which is consistent– Bogdanov ., 2000et al Vβ3 Fig. 6

with a rapid turnover of the protein, it has been noted that the half-life of native Ca  subunits is about 50 h ( ). ThoughVβ Berrow , 1995et al.

the reason for this discrepancy is unknown, it is possible that the association of the native Ca  subunits with membrane bound proteinsVβ

increases their stability.

It is worth mentioning also that proteolytic cleavage within a PEST sequence may not serve for protein degradation only. In this

regard, an exciting possibility is that proteolytical cleavage of the full length Ca  may result in the generation of short forms of theVβ3

protein with potential physiological actions. This is particularly important after the identification of several novel fully functional short

variants of the Ca  and Ca  subunits ( ; ; ). In this context, our work might suggestVβ1 Vβ2 Foell ., 2004et al Harry ., 2004et al Cohen ., 2005et al

that in addition to the splice isoforms generated through the genetically encoded deletions of specific regions in the Ca  gene, smallerVβ

functional variants could be also formed by post-transcriptional processing of the protein.
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On the other hand, the increase in Ca  current amplitude induced by transfection of Ca  mutant subunits lacking the PEST regions2+
Vβ3

in the HEK-293 cells suggest that the PEST mutants are more stable than the wild-type protein. In this scenario, the availability of CaΔ Vβ3

would be enhanced which may reverse the inhibition imposed by the endoplasmic reticulum (ER) retention signal to the Ca  subunitVα1

facilitating the cell surface expression of the Ca  channel complex. Indeed, PEST deletion seemed to make the PEST mutant proteinsV Δ

less susceptible to calpain cleavage ( ).Fig. 2

In addition, expression studies have shown that gating as well as regulation of high voltage-activated Ca  channels is for a large partV

determined by the interaction between the Ca  and the Ca  subunits. Though a range of functional effects has been identified for Ca ,Vα1 Vβ Vβ

one of the most important actions of this protein is to facilitate the trafficking of the Ca  subunit to the plasma membrane, partly by itsVα1

ability to mask the ER retention signal in Ca  ( ). However, the Ca  subunits can also affect the biophysicalVα1 Bichet ., 2000et al Vβ

properties of Ca  channels by changing the rates of activation and deactivation by voltage as well as by altering the rate of voltage-inducedV

inactivation, the inhibition by G protein  dimers, and/or the coupling of voltage sensing to pore opening ( ; βγ Birnbaumer ., 1998et al

; ; ).Walker and De Waard, 1998 Arikkath and Campbell, 2003 Dolphin, 2003

In particular, diverse studies have revealed that Ca  subunits have a marked effect on voltage-dependent inactivation of CaVβ V

channels, a key mechanism that contributes to the precise control of Ca  entry into cells. Whilst the Ca  subunit contains inherent2+
Vα1

determinants of inactivation, association with different Ca  subunits determines their overall inactivation rate ( ; Vβ Birnbaumer ., 1998et al

; ). Though the precise mechanisms of voltage-dependent inactivation are not well understood,Walker and De Waard, 1998 Dolphin, 2003

it is clear that subunit composition differentially affects the inactivation properties of Ca  channels. In general, wholecell patch clampV

studies indicate that co-expression of Ca , , and  with Ca  subunits do not modify the inactivation rate noticeably, whereas CaVβ1b β2a β4 Vα1 Vβ

 markedly enhances inactivation ( ). Interestingly, our functional studies on the effects of the PEST sequences using Ca3 Dolphin, 2003 Vβ3

mutant subunits suggested a role for these regions in the regulation of neuronal N-type recombinant Ca  channel activity by inactivation (V

).Fig. 4D

In response to membrane depolarization, control Ca  channels quickly activate followed by rapid inactivation ( ). In contrast,V Fig. 4A

the channels containing mutant Ca  subunits lacking the PEST regions displayed slower inactivation kinetics, resulting in a muchVβ3

smaller fraction of inactivated channels at the end of the test pulse ( ). In each case, the halfactivation potentials closely aligned withFig. 4D

those observed in the presence of the wild-type Ca  subunit, and therefore, any putative effects of the mutant subunits on inactivationVβ3

kinetics would unlikely be due to altered voltage dependence of activation gating. Interestingly, a variable region (V1) found at the

N-terminal of Ca  comprised of a short 14-amino acid stretch has been recently reported as a critical site for voltage-inducedVβ3

inactivation ( ). In addition, a second variable region (V2) in combination with one of the conserved domains of theStotz ., 2004et al

protein can also contribute to regulate Ca 2.2 inactivation ( ). However, the PEST1 sequence in Ca  is not located in aV Stotz ., 2004et al Vβ3

variable region of the protein, suggesting the presence of numerous domains in Ca  capable of conferring rapid inactivation kinetics.Vβ3

Although diverse studies with Ca  subunits suggest that some of their effects on channel activity require phosphorylation (Vβ Dolphin,

) little is known regarding the role of this process on Ca  channel inactivation. By using the NetPhos 2.0 software (available at the2003 V

URL ) which produces predictions for serine, threonine and tyrosine phosphorylation sites inhttp://www.cbs.dtu.dk/services/NetPhos/

eukaryotic proteins ( ), we found numerous phosphorylation sites for protein kinases on the Ca  PEST-like sequences.Blom ., 1999et al Vβ3

Proteolysis of Ca  by calpain would remove the phosphorylation consensus sites and the potential regulation of Ca  channel inactivationVβ3 V

through phosphorylation at these sites would also be abolished. Further studies are necessary to define whether the protein kinase-mediated

regulation of the Ca  subunit may be directly involved in the regulation of the inactivation process.Vβ3

The biochemical and electrophysiological studies described in the present study show that the Ca  auxiliary subunit is sensitive to Vβ3 μ

-calpain digestion within its PEST-like regions and suggest that this enzyme may play a critical role in regulating Ca  turnover. InVβ3

addition, the results provide evidence that the Ca  PEST-like sequences might be regulatory segments that influence theVβ3

voltage-dependent inactivation properties of Ca  channels. Lastly, if conserved sequence mediates conserved function, it would beV

interesting to investigate whether the findings for Ca  could be generalized to the entire family of Ca  subunits.Vβ3 Vβ
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Fig. 1
Identification and deletion of the PEST-like sequences in the Ca  subunit. , Schematic representation of the functional domains of CaVβ3 A Vβ3

and the putative PEST sequences. Two potential PEST regions with scores of 9.47 (residues 24 37) and 11.52 (residues 397 411) were+ – + –
found in the amino acid sequence of Ca  when analyzed with the PESTFind software. SH3 denotes a type 3 src-homology and GK-likeVβ3

indicate a guanylate kinase domain. , Autoradiogram of  translated S -methionine-labeled wild-type ( ) and PEST deletionB in vitro [35 ] β3

mutants of the Ca  subunit ( P1, P2, P1 2) resolved by SDS-PAGE. 5 l of each translation reaction were run per lane. , Western blotVβ3 Δ Δ Δ – μ C

analysis of membranes from untransfected HEK-293 cells ( ) or cells expressing the wild-type ( ) and the Ca  PEST deletion mutants (− β3 Vβ3 Δ

P1, P2, P1 2).Δ Δ –
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Fig. 2

The Ca  subunit is cleaved by Ca -dependent proteases.  Recombinant Ca  P1 2 protein is more stable than the wild-type Ca  toVβ3
2+ A, Vβ3 Δ – Vβ3

endogenous Ca -dependent proteases.  and  show the proteolytic breakdown of wild-type Ca  ( ) heterologously expressed in2+ Lanes 1 2 Vβ3 β3

HEK- 293 cells. 200 g of microsomes were incubated with Ca  (750 M) at 30 C for 20 min in absence or presence of EDTA (1.5 mM). Noμ 2+ μ °
proteolytic degradation was observed (lanes 3 4) when the PEST-like regions were deleted ( P1 2). , Coomassie-stained SDS-PAGE in a– Δ – B

10  resolving gel using Laemmli buffer system.  control;  microsomes from HEK- 293 cells expressing the wild-type Ca% Lane 1, lanes 2 7,– Vβ3

incubated for 20 min at 30 C with Ca , EDTA or calpeptin or exposed to increasing concentrations of -calpain. , Degradation of the Ca° 2+ μ C Vβ3

subunits in the presence of Ca  and a calpain protease inhibitor. Ca  subunits were incubated at 30 C for 20 min with 750 M Ca , 1802+
Vβ3 ° μ 2+

nM of calpeptin or 1.5 mM EDTA. The full-length ( ) or the double PEST deletion mutant ( P1 2) are indicated. , PEST mutant Caβ3 Δ – D Δ Vβ3

proteins were incubated for 20 min at 30 C with Ca , EDTA or calpeptin as indicated above or exposed to two increasing doses of -calpain° 2+ μ

as listed (in the presence of 750 M Ca ). In each case, one representative of at least two independent degradation experiments of wild-typeμ 2+

and mutant Ca  proteins is presented.Vβ3

Fig. 3
Deletion of the PEST-like sequences did not alter the specific binding of the mutant Ca  to the Ca  subunit. Determination of CaVβ3 Vα1 Vβ3

binding to the AID of the Ca 2.2 subunit. Capacity of the wild-type and mutant S -Ca  subunits to interact with the fusion proteinV [35 ] Vβ3

GST-AID  was assayed by SDS-PAGE and autoradiography. Translation represents the equivalent volume of  translation of S -Ca2.2 in vitro [35 ] V

 used in the binding assays.β3
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Fig. 4
Deletion of the PEST-like sequences alters whole-cell   in HEK-293 cells. , superimposed representative   recordings obtained fromI Ba A I Ba

HEK-293 cells co-expressing neuronal recombinant Ca 2.2/ -1 channels and the wild-type Ca  subunit (control) or its PEST deletionV α2δ Vβ3

mutants ( P1, P2 and P1 2) in response to 140 ms test pulses to 10 mV from the holding potential of 80 mV. , Comparison of peak  Δ Δ Δ – + − B I

 densities in Ca 2.2/ -1 channels coexpressed with wild-type Ca  or the PEST deficient mutants. Data are expressed as mean  S.E.,Ba V α2δ Vβ3 ±

and the number of recorded cells is indicated in parentheses. Statistical significance was determined by Student s -test ( , <0.05). ,  ’ t * P C I Ba

density-voltage relationship averages for HEK- 293 cells co-expressing neuronal recombinant Ca 2.2/ -1 channels and the wild-type CaV α2δ Vβ3

subunit (control;   6) or its single ( P1;   7; and P2   6) and double PEST deletion mutants (filled circles, n = Δ open circles, n = Δ gray circles, n = Δ
P1 2;   7). Currents were elicited by eleven 140 ms depolarizing pulses between 40 and 60 mV in 10 mV increments from– filled squares, n = − +
a holding potential of 80 mV.  Comparison of inactivation time constants ( ; ) and percentage of inactivated channels at the− D, τinact gray bars

end of a test pulse to 10 mV ( ) for   through Ca 2.2/ -1 channels co-expressing the wild-type Ca  subunit or its PEST+ open bars I Ba V α2δ Vβ3 Δ

mutants. The time course of inactivation was typically best fit with a monoexponential function. Bars represent mean  S.E. values of 25 cells±
in each condition. Statistically significant results are shown by the  (  test; <0.05).asterisk t P
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Fig. 5

Changes in the functional expression of recombinant N-type (Ca 2.2/ -1/ ) Ca  channels in HEK-293 cells treated with the specificV α2δ β3
2+

calpain inhibitor calpeptin. , Superimposed   traces recorded in untreated (control) cells expressing Ca 2.2/ -1/  channels and cellsA I Ba V α2δ β3

exposed to calpeptin (25 M at 37 C for 3 6 h). The currents were elicited by 140 ms voltage steps to 10 mV from a holding potential of 80μ ° – + −
mV. , Summary histogram of   densities obtained from cells after 3 or 6 h of exposure to calpeptin. Densities were calculated on dividingB I Ba

peak current amplitudes elicited from voltage steps of 80 to 10 mV, by the whole-cell capacitance. , Representative superimposed  − + C I Ba

traces in HEK-293 cells co-expressing Ca 2.2/ -1 and the mutant P1 2  subunit recorded as in  Histogram of   densitiesV α2δ Δ – β3 A. D, I Ba

obtained from calpeptin-treated cells as listed. Data are expressed as mean  S.E., and the number of recorded cells is indicated in parentheses.±
Statistically significant results are shown by the  (  test; <0.05).asterisk t P

Fig. 6
The PEST mutations have an increased protein half-life. Wild type Ca  subunit and its PEST mutants half-lives were determined inΔ Vβ3 Δ

HEK-293 cells 24 h after transfection. Cells were pulse-labeled for 40 min. at 37 C with 500 Ci/ l S -L-containing media. After the pulse,º μ μ [35 ]
radioactive media was replaced by complete medium; cells were lysed after a 24 h chase period in complete media, and analyzed by

SDS-PAGE. An immunoprecipication with a polyclonal anti-  IgG was performed to purify Ca  variants and their proteolytic fragments.β3 Vβ3

Lane 1 shows the control precipitation (incubation of protein A sepharose beads with protein extracts containing S -wild-type Ca ). Lanes[35 ] Vβ3

2, 3, 4 and 5 represent the endogenous proteolytic degradation of the wild-type Ca  subunit and its PEST mutations  P1, P2 and P1 2Vβ3 Δ Δ Δ –

after immunoprecipitation by the anti-  IgGs.β3


