L. E. Adler, A. Olincy, M. Waldo, J. G. Harris, J. Griffith et al., Schizophrenia, Sensory Gating, and Nicotinic Receptors, Schizophrenia Bulletin, vol.24, issue.2, pp.189-202, 1998.
DOI : 10.1093/oxfordjournals.schbul.a033320

A. Andrieux, P. A. Salin, M. Vernet, P. Kujala, J. Baratier et al., The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders, Genes & Development, vol.16, issue.18, pp.2350-2364, 2002.
DOI : 10.1101/gad.223302

C. Bosc, J. D. Cronk, F. Pirollet, D. M. Watterson, J. Haiech et al., Cloning, expression, and properties of the microtubule-stabilizing protein STOP., Proc. Natl. Acad. Sci. USA 93, pp.2125-2130, 1996.
DOI : 10.1073/pnas.93.5.2125

C. R. Breese, M. J. Lee, C. E. Adams, B. Sullivan, J. Logel et al., Abnormal Regulation of High Affinity Nicotinic Receptors in Subjects with Schizophrenia, Neuropsychopharmacology, vol.23, issue.4, pp.351-364, 2000.
DOI : 10.1016/S0893-133X(00)00121-4

P. Brun, M. Begou, A. Andrieux, L. Mouly-badina, M. Clerget et al., Dopaminergic transmission in STOP null mice, Journal of Neurochemistry, vol.65, issue.1, pp.63-73, 2005.
DOI : 10.1016/0165-0173(90)90015-G

URL : https://hal.archives-ouvertes.fr/inserm-00380189

J. J. Buccafusco, S. R. Letchworth, M. Bencheri, and P. M. Lippiello, Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic???pharmacodynamic discordance, Trends in Pharmacological Sciences, vol.26, issue.7, pp.352-360, 2005.
DOI : 10.1016/j.tips.2005.05.007

J. De-leon, M. Dadvand, C. Canuso, A. O. White, J. K. Stanilla et al., Schizophrenia and smoking: an epidemiological survey in a state hospital, Am. J. Psychiatry, vol.152, pp.453-455, 1995.

S. L. Eastwood, L. Lyon, L. George, A. Andrieux, D. Job et al., Altered expression of synaptic protein mRNAs in STOP (MAP-6) mutant mice, J. Psychopharmacol, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00380032

R. L. Fradley, G. F. O-'meara, R. J. Newman, A. Andrieux, D. Job et al., STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating, Behavioural Brain Research, vol.163, issue.2, pp.257-264, 2005.
DOI : 10.1016/j.bbr.2005.05.012

URL : https://hal.archives-ouvertes.fr/inserm-00380197

W. G. Frankle, J. Lerma, and M. Laruelle, The Synaptic Hypothesis of Schizophrenia, Neuron, vol.39, issue.2, pp.205-216, 2003.
DOI : 10.1016/S0896-6273(03)00423-9

R. Freedman, M. Hall, L. E. Adler, and S. Leonard, Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia, Biological Psychiatry, vol.38, issue.1, pp.22-33, 1995.
DOI : 10.1016/0006-3223(94)00252-X

R. R. Gainetdinov, A. R. Mohn, and M. G. Caron, Genetic animal models: focus on schizophrenia, Trends in Neurosciences, vol.24, issue.9, pp.527-533, 2001.
DOI : 10.1016/S0166-2236(00)01886-5

B. Giros, M. Jaber, S. R. Jones, R. M. Wightman, and M. G. Caron, Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter, Nature, vol.379, issue.6566, pp.606-612, 1996.
DOI : 10.1038/379606a0

A. H. Glassman, Cigarette smoking: implications for psychiatric illness, Am. J. Psychiatry, vol.150, pp.546-553, 1993.

L. Guillaud, C. Bosc, A. Fourest-lieuvin, E. Denarier, F. Pirollet et al., STOP Proteins are Responsible for the High Degree of Microtubule Stabilization Observed in Neuronal Cells, The Journal of Cell Biology, vol.15, issue.1, pp.167-179, 1998.
DOI : 10.1083/jcb.133.1.151

S. Kaiser and S. Wonnacott, Alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release, Mol. Pharmacol, vol.58, pp.312-318, 2000.

V. Kumari and P. Postma, Nicotine use in schizophrenia: The self medication hypotheses, Neuroscience & Biobehavioral Reviews, vol.29, issue.6, pp.1021-1034, 2005.
DOI : 10.1016/j.neubiorev.2005.02.006

G. Leanza, O. G. Nilsson, R. G. Wiley, and A. Bjorklund, Selective Lesioning of the Basal Forebrain Cholinergic System by Intraventricular 192 IgG-saporin: Behavioural, Biochemical and Stereological Studies in the Rat, European Journal of Neuroscience, vol.290, issue.2, pp.329-343, 1995.
DOI : 10.1111/j.1460-9568.1995.tb01068.x

S. Leonard, J. Gault, J. Hopkins, J. Logel, R. Vianzon et al., Association of Promoter Variants in the ??7 Nicotinic Acetylcholine Receptor Subunit Gene With an Inhibitory Deficit Found in Schizophrenia, Archives of General Psychiatry, vol.59, issue.12, pp.1085-1096, 2002.
DOI : 10.1001/archpsyc.59.12.1085

E. D. Levin, Nicotinic receptor subtypes and cognitive function, Journal of Neurobiology, vol.51, issue.4, pp.633-640, 2002.
DOI : 10.1002/neu.10151

E. D. Levin, A. Bradley, N. Addy, and N. Sigurani, Hippocampal ??7 and ??4??2 nicotinic receptors and working memory, Neuroscience, vol.109, issue.4, pp.757-765, 2002.
DOI : 10.1016/S0306-4522(01)00538-3

M. J. Marks, P. Whiteaker, and A. C. Collins, Deletion of the ??7, beta2, or beta4 Nicotinic Receptor Subunit Genes Identifies Highly Expressed Subtypes with Relatively Low Affinity for [3H]Epibatidine, Molecular Pharmacology, vol.70, issue.3, pp.947-959, 2006.
DOI : 10.1124/mol.106.025338

D. Marsh, J. Grassi, M. Vigny, and J. Massoulie, An Immunological Study of Rat Acetylcholinesterase: Comparison with Acetylcholinesterases from Other Vertebrates, Journal of Neurochemistry, vol.62, issue.1, pp.204-213, 1984.
DOI : 10.1016/0014-5793(81)80186-X

U. Maskos, B. E. Molles, S. Pons, M. Besson, B. P. Guiard et al., Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors, Nature, vol.47, issue.7047, pp.103-107, 2005.
DOI : 10.1038/nature03694

URL : https://hal.archives-ouvertes.fr/pasteur-00162546

S. Matsuyama and A. Matsumoto, Epibatidine Induces Long-Term Potentiation (LTP) via Activation of ??4??2 Nicotinic Acetylcholine Receptors (nAChRs) In Vivo in the Intact Mouse Dentate Gyrus: Both ??7 and ??4??2 nAChRs Essential to Nicotinic LTP, Journal of Pharmacological Sciences, vol.93, issue.2, pp.180-187, 2003.
DOI : 10.1254/jphs.93.180

F. Menzaghi, K. T. Whelan, V. B. Risbrough, T. S. Rao, and G. K. Lloyd, Effects of a novel cholinergic ion channel agonist SIB-1765F on locomotor activity in rats, J. Pharmacol. Exp. Ther, vol.280, pp.384-392, 1997.

S. Mihailescu and R. Drucker-colin, Nicotine, Brain Nicotinic Receptors, and Neuropsychiatric Disorders, Archives of Medical Research, vol.31, issue.2, pp.131-144, 2000.
DOI : 10.1016/S0188-4409(99)00087-9

K. Mirnics, F. A. Middleton, D. A. Lewis, and P. Levitt, Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse, Trends in Neurosciences, vol.24, issue.8, pp.479-486, 2001.
DOI : 10.1016/S0166-2236(00)01862-2

R. L. Papke, M. Bencherif, and P. Lippiello, An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the ??7 subtype, Neuroscience Letters, vol.213, issue.3, pp.201-204, 1996.
DOI : 10.1016/0304-3940(96)12889-5

D. C. Perry and K. J. Kellar, [3H]epibatidine labels nicotinic receptors in rat brain: an autoradiographic study, J. Pharmacol. Exp. Ther, vol.275, pp.1030-1034, 1995.

M. R. Picciotto, B. J. Caldarone, D. H. Brunzell, V. Zachariou, T. R. Stevens et al., Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications, Pharmacology & Therapeutics, vol.92, issue.2-3, pp.89-108, 2001.
DOI : 10.1016/S0163-7258(01)00161-9

M. R. Picciotto, M. Zoli, R. Rimondini, C. Lena, L. M. Marubio et al., Acetylcholine receptors containing the [beta]2 subunit are involved in the reinforcing properties of nicotine, Nature, vol.391, pp.173-177, 1998.

F. E. Pontieri, G. Tanda, F. Orzi, D. Chiara, and G. , Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs, Nature, vol.382, issue.6588, pp.255-257, 1996.
DOI : 10.1038/382255a0

K. A. Sacco, K. L. Bannon, and T. P. George, Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders, Journal of Psychopharmacology, vol.22, issue.2, pp.457-474, 2004.
DOI : 10.1177/0269881104047273

D. P. Spurden, J. A. Court, S. Lloyd, A. Oakley, R. Perry et al., Nicotinic receptor distribution in the human thalamus: autoradiographical localization of [3H]nicotine and [125I]??-bungarotoxin binding, Journal of Chemical Neuroanatomy, vol.13, issue.2, pp.105-113, 1997.
DOI : 10.1016/S0891-0618(97)00038-0

D. Van-dam, G. Lenders, and P. P. De-deyn, Effect of Morris water maze diameter on visual-spatial learning in different mouse strains, Neurobiology of Learning and Memory, vol.85, issue.2, pp.164-172, 2006.
DOI : 10.1016/j.nlm.2005.09.006

D. Van-rossum and U. K. Hanisch, Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci, pp.290-295, 1999.

S. Weiss, M. Nosten-bertrand, J. M. Mcintosh, B. Giros, and M. Martres, Nicotine improves cognitive deficits of dopamine transporter knock-out mice without long-term tolerance, Neuropsychopharmacology, 2007.

S. Weiss, E. T. Tzavara, R. J. Davis, G. G. Nomikos, J. M. Mcintosh et al., Functional alterations of nicotinic neurotransmission in dopamine transporter knock-out mice, Neuropharmacology, vol.52, issue.7, 2007.
DOI : 10.1016/j.neuropharm.2007.02.002

P. Whiteaker, J. M. Mcintosh, S. Luo, A. C. Collins, and M. J. Marks, 125I-alpha- conotoxin MII identifies a novel nicotinic acetylcholine receptor population in mouse brain, Mol. Pharmacol, vol.57, pp.913-925, 2000.

J. W. Young, K. Finlayson, C. Spratt, H. M. Marston, N. Crawford et al., Nicotine Improves Sustained Attention in Mice: Evidence for Involvement of the ??7 Nicotinic Acetylcholine Receptor, Neuropsychopharmacology, vol.29, issue.5, pp.891-900, 2004.
DOI : 10.1038/sj.npp.1300393

M. Zoli, C. Lena, M. R. Picciotto, and J. P. Changeux, Identification of four classes of brain nicotinic receptors using beta2 mutant mice cingulate cortex, ) 192±5 (6) 173±10 -10% ns ?7 SN (5) 50.0±4.9 (5) 48.0±8.3 -4% ns VTA (6) 143±11 (4) 132±20 -) 97.5±14.8 +67% *** Septum (5) 40.1±3.7 (5) 38.6±2.6 -4% ns Cing Cx (5) 35.2±2.4 (4) 32.5±2.8 -8% ns Densities are the means ± SEM of specific radioligand binding in nCi/mg. The number of mice is indicated in parentheses. Acc, nucleus accumbens; CA1, CA3, CA1 and CA3 fields of hippocampus dorsal hippocampus; SN, substantia nigra; SNC, substantia nigra, pp.4461-4472, 1998.

D. Str, dorso-lateral striatum; VTA, ventral tegmental area