A. Mosbah, R. Kharrat, Z. Fajloun, J. Renisio, E. Blanc et al., A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.436-442, 2000.
DOI : 10.1002/1097-0134(20000815)40:3<436::AID-PROT90>3.0.CO;2-9

E. Esteve, S. Smida-rezgui, S. Sarkozi, C. Szegedi, I. Regaya et al., Critical Amino Acid Residues Determine the Binding Affinity and the Ca2+ Release Efficacy of Maurocalcine in Skeletal Muscle Cells, Journal of Biological Chemistry, vol.278, issue.39, pp.37822-37831, 2003.
DOI : 10.1074/jbc.M305798200

L. Chen, E. Esteve, J. Sabatier, M. Ronjat, D. Waard et al., Maurocalcine and Peptide A Stabilize Distinct Subconductance States of Ryanodine Receptor Type 1, Revealing a Proportional Gating Mechanism, Journal of Biological Chemistry, vol.278, issue.18, pp.16095-16106, 2003.
DOI : 10.1074/jbc.M209501200

E. Esteve, K. Mabrouk, A. Dupuis, S. Smida-rezgui, X. Altafaj et al., Transduction of the Scorpion Toxin Maurocalcine into Cells: EVIDENCE THAT THE TOXIN CROSSES THE PLASMA MEMBRANE, Journal of Biological Chemistry, vol.280, issue.13, pp.12833-12839, 2005.
DOI : 10.1074/jbc.M412521200

URL : https://hal.archives-ouvertes.fr/hal-00067701

S. Boisseau, K. Mabrouk, N. Ram, N. Garmy, C. V. Tadmouri et al., Cell penetration properties of maurocalcine, a natural venom peptide active on the intracellular ryanodine receptor, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.3, pp.308-319, 2006.
DOI : 10.1016/j.bbamem.2006.02.007

URL : https://hal.archives-ouvertes.fr/inserm-00394156

K. Mabrouk, R. N. Boisseau, S. Strappazzon, F. Rehaim, A. Sadoul et al., Critical amino acid residues of maurocalcine involved in pharmacology, lipid interaction and cell penetration, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.10, pp.2528-2540, 2007.
DOI : 10.1016/j.bbamem.2007.06.030

URL : https://hal.archives-ouvertes.fr/inserm-00378029

D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing et al., Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independent, Journal of Biological Chemistry, vol.271, issue.30, pp.18188-18193, 1996.
DOI : 10.1074/jbc.271.30.18188

T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda et al., Possible Existence of Common Internalization Mechanisms among Arginine-rich Peptides, Journal of Biological Chemistry, vol.277, issue.4, pp.2437-2443, 2002.
DOI : 10.1074/jbc.M110017200

E. Vives, J. Richard, C. Rispal, and B. Lebleu, TAT Peptide Internalization: Seeking the Mechanism of Entry, Current Protein & Peptide Science, vol.4, issue.2, pp.125-132, 2003.
DOI : 10.2174/1389203033487306

E. Vives, P. Brodin, and B. Lebleu, A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus, Journal of Biological Chemistry, vol.272, issue.25, pp.16010-16017, 1997.
DOI : 10.1074/jbc.272.25.16010

J. Berlose, O. Convert, D. Derossi, A. Brunissen, and G. Chassaing, Conformational and Associative Behaviours of the Third Helix of Antennapedia Homeodomain in Membrane-Mimetic Environments, European Journal of Biochemistry, vol.114, issue.2, pp.372-386, 1996.
DOI : 10.1016/0304-4157(78)90001-1

M. Magzoub and A. Graslund, Cell-penetrating peptides: small from inception to application, Quarterly Reviews of Biophysics, vol.37, issue.2, pp.147-195, 2004.
DOI : 10.1017/S0033583505004014

J. Wadia, R. Stan, and S. Dowdy, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis, Nature Medicine, vol.10, issue.3, pp.310-315, 2004.
DOI : 10.1038/nm996

S. Sandgren, F. Cheng, and M. Belting, Nuclear Targeting of Macromolecular Polyanions by an HIV-Tat Derived Peptide. ROLE FOR CELL-SURFACE PROTEOGLYCANS, Journal of Biological Chemistry, vol.277, issue.41, pp.38877-38883, 2002.
DOI : 10.1074/jbc.M205395200

R. Sadir, F. Baleux, A. Grosdidier, A. Imberty, and H. Lortat-jacob, Characterization of the Stromal Cell-derived Factor-1??-Heparin Complex, Journal of Biological Chemistry, vol.276, issue.11, pp.8288-8296, 2001.
DOI : 10.1074/jbc.M008110200

URL : https://hal.archives-ouvertes.fr/pasteur-00166877

R. Vives, A. Imberty, Q. Sattentau, and H. Lortat-jacob, Heparan Sulfate Targets the HIV-1 Envelope Glycoprotein gp120 Coreceptor Binding Site, Journal of Biological Chemistry, vol.280, issue.22, pp.21353-21357, 2005.
DOI : 10.1074/jbc.M500911200

S. Sarrazin, D. Bonnaffe, A. Lubineau, and H. Lortat-jacob, Heparan Sulfate Mimicry: A SYNTHETIC GLYCOCONJUGATE THAT RECOGNIZES THE HEPARIN BINDING DOMAIN OF INTERFERON-?? INHIBITS THE CYTOKINE ACTIVITY, Journal of Biological Chemistry, vol.280, issue.45, pp.37558-37564, 2005.
DOI : 10.1074/jbc.M507729200

URL : https://hal.archives-ouvertes.fr/hal-00274500

J. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure et al., Cell-penetrating Peptides. A REEVALUATION OF THE MECHANISM OF CELLULAR UPTAKE, Journal of Biological Chemistry, vol.278, issue.1, pp.585-590, 2003.
DOI : 10.1074/jbc.M209548200

S. Conner and S. Schmid, Regulated portals of entry into the cell, Nature, vol.277, issue.6927, pp.37-44, 2003.
DOI : 10.1038/nature01451

T. Sun, A. Van-hoek, Y. Huang, R. Bouley, M. Mclaughlin et al., Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin, American Journal of Physiology - Renal Physiology, vol.282, issue.6, pp.998-1011, 2002.
DOI : 10.1152/ajprenal.00257.2001

M. Mano, C. Teodosio, A. Paiva, S. Simoes, P. De-lima et al., -PV cell-penetrating peptide, Biochemical Journal, vol.390, issue.2, pp.603-612, 2005.
DOI : 10.1042/BJ20050577

URL : https://hal.archives-ouvertes.fr/hal-00528283

F. Nascimento, M. Hayashi, A. Kerkis, V. Oliveira, E. Oliveira et al., Crotamine Mediates Gene Delivery into Cells through the Binding to Heparan Sulfate Proteoglycans, Journal of Biological Chemistry, vol.282, issue.29, pp.21349-21360, 2007.
DOI : 10.1074/jbc.M604876200