Iterative PET Image Reconstruction Using Translation Invariant Wavelet Transform.

Abstract : The present work describes a Bayesian maximum a posteriori (MAP) method using a statistical multiscale wavelet prior model. Rather than using the orthogonal discrete wavelet transform (DWT), this prior is built on the translation invariant wavelet transform (TIWT). The statistical modeling of wavelet coefficients relies on the generalized Gaussian distribution. Image reconstruction is performed in spatial domain with a fast block sequential iteration algorithm. We study theoretically the TIWT MAP method by analyzing the Hessian of the prior function to provide some insights on noise and resolution properties of image reconstruction. We adapt the key concept of local shift invariance and explore how the TIWT MAP algorithm behaves with different scales. It is also shown that larger support wavelet filters do not offer better performance in contrast recovery studies. These theoretical developments are confirmed through simulation studies. The results show that the proposed method is more attractive than other MAP methods using either the conventional Gibbs prior or the DWT-based wavelet prior.
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00361436
Contributeur : Lotfi Senhadji <>
Soumis le : dimanche 15 février 2009 - 14:29:23
Dernière modification le : mercredi 16 mai 2018 - 11:23:17
Document(s) archivé(s) le : mardi 8 juin 2010 - 22:28:41

Fichiers

manuscript_tns_final_11_08-08....
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jian Zhou, Lotfi Senhadji, Jean-Louis Coatrieux, Limin Luo. Iterative PET Image Reconstruction Using Translation Invariant Wavelet Transform.. IEEE Transactions on Nuclear Science, Institute of Electrical and Electronics Engineers, 2009, 56 (1), pp.116-128. 〈10.1109/TNS.2008.2009445〉. 〈inserm-00361436〉

Partager

Métriques

Consultations de la notice

320

Téléchargements de fichiers

515