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 ABSTRACT  

Neurotensin is one of the genes previously found up-regulated in mice striatum after acute injection 

of MDMA (9mg/kg). In order to examine the pharmacological significance of this effect the 

involvement of the neurotensinergic system in MDMA-induced behaviors was explored in mice 

using the neurotensin receptor antagonist SR142948A (1mg/kg). We found that acute 

administration of the antagonist inhibited the MDMA-elicited locomotor activity. SR142948A pre-

treatment had no effect on the acquisition of conditioned place preference (CPP) to MDMA but 

abolished the expression of this behavior. We also studied the effects of acute and repeated 

exposure to MDMA on the mRNA level of neurotensin in mice striatum. Kinetic analysis of the 

regulation 1, 2, 6 and 12 hours after acute injection of MDMA showed that the drug transiently up-

regulate neurotensin mRNA in this structure. The time course of the modulation suggests that the 

effects observed with SR142948A are attributable to the release of a preexisting endogenous pool 

rather than the newly synthesized peptide. Repeated exposure to MDMA following the same 

injection pattern used in the CPP paradigm revealed an increase in mRNA level of neurotensin in 

mice striatum. These results indicate that endogenous neurotensin play a role in both the acute 

locomotor activity and the expression of CPP induced by MDMA.  

 

Keywords : neurotensin, MDMA, gene expression, behavior, mice 
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INTRODUCTION 

 

MDMA (3,4-methylenedioxymethamphetamine) is the psychoactive compound of the widely 

abused drug “ecstasy”. This compound is structurally related to both amphetamine and 

hallucinogens. In rodents, MDMA has been shown to have psychostimulant and rewarding effects, 

similar to those observed by administration of amphetamine and cocaine (Salzmann et al., 2003; 

Trigo et al., 2006). The mechanism of action of MDMA is complex and not yet completely known. 

At the neurochemical level MDMA produces the release of both dopamine (DA) and serotonin (5-

HT) from nerve terminals (for review, see: (Colado et al., 2004). By interacting with their 

respective receptors, these neurotransmitters are responsible for the acute and long lasting effects of 

MDMA. Moreover, MDMA displays a moderate affinity also to other receptors, whose activation 

could be at the origin of some of its effects (Battaglia et al., 1988). At the cellular level MDMA 

administration in mice causes a variety of transcriptional events, probably responsible for the long 

term effects and the addictive properties of this substance, in several brain structures (Salzmann et 

al., 2006; Salzmann et al., 2003). Among these, up-regulation of the gene coding for the precursor 

of the peptide neurotensin was recently observed in our laboratory in mice striatum (Salzmann et 

al., 2006). It is well known that this tridecapeptide is closely related with dopamine transmission in 

the central nervous system. The biological actions of neurotensin are initiated by binding to three 

different receptor subtypes NTS1, NTS2 and NTS3. However it clearly appears that the majority of 

the central effects of neurotensin appear to be exerted through the high affinity NTS1. Thus it has 

been shown that endogenous neurotensin, through activation of NTS1 receptors, mediates some 

behavioural effects of psychostimulants. Pre-treatment with an antagonist of the NTS1 receptor, 

SR48692, reduced the number of rearing induced by acute cocaine injection (Betancur et al., 1998) 

and delayed the development of cocaine sensitization (Horger et al., 1994 ). Furthermore, the 

locomotor sensitization to amphetamine could be blocked when the drug was co-administered with 

SR48692 (Panayi et al., 2005; Panayi et al., 2002; Rompre and Perron, 2000).  
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The aim of this study was to explore the role of endogenous neurotensin on behavioral 

effects of MDMA, including hyperlocomotion and the acquisition and expression of conditioned 

place preference. The potent and selective NTS1 receptor antagonist SR142948A was used. In 

addition, we further explored with real time quantitative PCR the gene expression of neurotensin 

precursor following acute and chronic MDMA administration in the striatum of mice.  
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MATERIALS AND METHODS 

Animals and drugs : Male CD-1 mice (Charles River, L’arbresle, France), weighing 22-24g at the 

beginning of the experiments, were housed in a temperature controlled environment (21±2°) under a 

12 h light/dark cycle (lights on 7:00-19:00) with food and water provided ad libitum. All 

experiments were performed in strict accordance with the guidelines for the use and care of 

experimental animals promulgated by the European Community (EEC No. 86/609). All efforts were 

made to minimize animal suffering and to use only the number of animals necessary to produce 

reliable scientific data. D,L-MDMA (Lipomed, Arlesheim, Switzerland) and the neurotensin 

receptor antagonist SR142948A (generous gift from Sanofi-Aventis) were dissolved in saline 

solution (0.9 % NaCl). All drugs were injected intraperitoneally (i.p.) in a volume of 0.1 ml per 10 g 

of body weight. The doses of MDMA and SR148942A were chosen based on published data 

(Salzmann et al, 2003; Azmi et al, 2006; Blinder et al, 2002).The antagonist was injected 20 

minutes before MDMA.  

Conditioned Place Preference (CPP) paradigm: As previously described an unbiased place 

preference conditioning procedure was used (Salzmann et al., 2003). The place preference 

apparatus consisted of two conditioning compartments (15x15x15 cm) separated by a neutral area. 

The conditioning compartments were differentiated by a distinctive sensory cue: the wall coloring 

pattern (black or strips). Movements and location of mice were recorded by computerized 

monitoring software (Videotrack, Viewpoint, Lyon, France). The protocol consists of three phases. 

Preconditioning phase: drug-naïve mice had free access to all compartments for 20 min, and the 

time spent in each compartment is recorded. Conditioning phase: this phase consisted in 6 days 

where each conditioning chamber was closed. On the first conditioning day, mice were treated with 

drugs or saline according to their group and were placed after the injection in one of the 

conditioning environments individually for 20 min. The following conditioning day, all mice were 

given saline in the opposite compartment, and this sequence was repeated during the next 4 days. 

The designation of drug-paired chamber was random and resulted in an approximately equal 
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representation of the two conditioning chambers as the drug-paired chamber across groups for all 

experiments. Post-conditioning phase: this phase took place 24 h after the final conditioning session 

(day 7). This phase was carried out exactly as the preconditioning phase. Results are expressed in 

scores (mean ± s.e.m.) calculated as the difference between the time spent in the drug-paired 

compartment during the post-conditioning phase minus the time spent in the same compartment in 

the preconditioning phase. The total number of visits and the distance traveled (arbitrary unit) were 

also recorded during the test day. 

Experiment I: effect of SR142948A on the acquisition of MDMA –induced CPP.  

On conditioning days 1, 3 and 5, animals received SR142948A (1 mg kg–1; i.p.) or saline 20 min 

before MDMA (9 mg kg–1; i.p) or saline injection, and then were placed in the drug-paired 

compartment for 20 min.  

Experiment II: effect of SR142948A on the expression of MDMA –induced CPP 

During the test phase (day 7) animals received SR142948A (1 mg kg–1; i.p.) or saline 20 min before 

being placed in the apparatus for final recording. 

Locomotor Activity : Locomotor activity was recorded in transparent activity boxes (10x18x14 cm; 

Imetronic, Bordeaux, France). Displacements were measured by photocell beams located across the 

long axis, 20 mm above the floor (horizontal activity). Naïve mice, not prehabituated to the activity 

boxes, received MDMA (9 mg kg–1; i.p.) or saline injection 20 minutes after SR142948A (0.25 or 1 

mg kg–1; i.p.) or saline, and their locomotor activity was immediately recorded for 60 minutes. 

Locomotor activity was expressed in scores (means ± s.e.m.) as the number of interruption of the 

photocell beams, recorded every 10 minutes. 

Drugs treatments and brain dissection for quantitative real-time PCR: For the study of 

neurotensin gene (Nts) expression following acute drug administration mice, previously injected 

with MDMA (9 mg kg–1; i.p) or saline, were killed by cervical dislocation 1, 2, 6, 12 or 24 hours 

after a single injection. To study the effect of chronic MDMA administration on gene expression, 

two groups of mice were treated with the same administration schedule used in CPP general 
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protocol. Animals were chronically treated with MDMA (9 mg kg–1; i.p) or saline according to their 

group on days 1, 3 and 5, and with saline on days 2, 4 and 6, as previously described. These mice 

were then killed by cervical dislocation on day seven, 24 hours after the last injection. After cervical 

dislocation the brain was quickly removed, frozen in isopentane at –50 °C, and placed in an acrylic 

matrix (David Kopf Instruments, Tujunga, CA, USA) allowing the reproducible slicing of 1 mm 

coronal sections. A 2 mm-section was cut, corresponding approximately to bregma +0.26 mm to –

0.46 mm according to the mouse brain atlas (Paxinos and Franklin, 2000). Striatum was then 

dissected free–hand in ice within the slice, and stored at –80 °C until processing. 

RNA isolation and reverse transcription for quantitative real-time PCR: Total RNA used for 

quantitative PCR experiments was extracted from individual dorsal striata by a modified acid-

phenol guanidinium method, following the manufacturer’s protocol (RNAble®, Eurobio, 

Courtaboeuf, France). The quality of the RNA samples was determined by electrophoresis through 

agarose gels and staining with ethidium bromide. Quantification of total RNA was assessed using a 

NanoDrop® ND-1000 spectrophotometer (NanoDrop® Technologies, USA). Reverse transcription 

of RNA was performed in a final volume of 20 μl containing 1× first strand buffer (Invitrogen, 

France), 500 μM each dNTP, 20 U of Rnasin ribonuclease inhibitor (Promega, France), 10 mM 

dithiothreitol, 100 U of Superscript II Rnase H− reverse transcriptase (Invitrogen, France), 1.5 μM 

random hexanucleotide primers (Amersham Biosciences, France) and 1 μg of total RNA as 

previously described (Salzmann et al, 2003). 

Real time quantitative RT-PCR: Fluorescent PCR reactions were performed on a Light-Cycler® 

instrument (Roche Diagnostics, Meylan, France) using the LC-FastStart DNA Master SYBR Green 

I kit (Roche Diagnostics). The cDNAs were diluted 500-fold and 5 μl were added to the PCR 

reaction mix to yield a total volume of 10 μl. The reaction buffer contained 4 mM MgCl2 and 0.5 

μM of each primer. The PCR reactions were performed with 10-12 samples/drug treatment, each 

sample being prepared with bilateral dorsal striata from one mouse. Quantification was made on the 

basis of a calibration curve using cDNA from an untreated mouse brain as previously described 
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(Salzmann et al., 2006). PCR primers were chosen with the assistance of Oligo 6.42 software 

(MedProbe, Norway). In addition to the transcript of neurotensine (Nts), the hypoxanthine-guanine-

phosphoribosyl-transferase transcript (Hprt) was also quantified and each sample was normalized 

on the basis of its Hprt content. The nucleotide sequences of the primers used for Nts and Hprt 

quantification have been previously described (Salzmann et al., 2006). Results are expressed as Nts 

transcript/Hprt transcript. 

Statistical analysis: All series of data were analyzed with Statview 5.0 software. For conditioned 

place preference and real time quantitative RT-PCR results, data were analyzed using one-way 

ANOVA between subjects, followed by a Fisher-PLSD test for post hoc comparisons. For 

locomotor activity times x treatments interactions were analyzed by two-way ANOVA, for repeated 

measures followed by a one-way ANOVA and a Fisher-PLSD test for post hoc comparisons. The 

level of significance was set at P <0.05. 
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RESULTS  

Effect of SR142948A on MDMA-induced hyperlocomotion: The effects of two doses of 

SR148942A on MDMA-induced locomotor activity were tested (Figure 1A and 1B). In both cases 

(0.25 or 1mg kg-1 of SR142948A) two-way ANOVA for repeated measures showed a significant 

treatment effect, time effect and time x treatment interaction.  

As shown in Figure 1A, administration of MDMA increased locomotor activity as compared to 

saline-treated animals throughout the 60 min period of testing (saline/MDMA vs saline/saline, 10 

min.: P<0.0001, 20 min.: P<0.0001, 30 min.: P=0.0003, 40 min.: P=0.0010, 50 min.: P<0.0001 and 

60 min: P<0.0001). This hyperactivity was antagonized by pre-injection of SR142948A (0.25 mg 

kg–1; i.p) 20 min before MDMA treatment (saline/MDMA vs SR142948A/MDMA, 10 min.: 

P=0.0065, 20 min.: P=0.0025, 30 min.: P=0.0003, 40 min.: P=0.0026, 50 min.: P=0.0035 and 60 

min: P=0.0045). We also observed a significant difference in locomotor activity between 

SR142948A/saline and SR142948A/MDMA group, while no significant difference was found 

between saline/saline and SR142948A/saline treated animals (Figure 1A). 

 As shown in Figure 1B, administration of MDMA increased locomotor activity as compared to 

saline-treated animals throughout the 60 min. period of testing (saline/MDMA vs saline/saline, 10 

min.: P=0.0002, 20 min.: P=0.0091, 30 min.: P=0.0003, 40 min.: P<0.0001, 50 min.: P<0.0001 and 

60 min: P<0.0001). This hyperactivity was antagonized by pre-injection of SR142948A (1 mg kg–1; 

i.p) 20 min before MDMA treatment, as shown on figure 1B (saline/MDMA vs 

SR142948A/MDMA, 10 min.: P=0.0174, 20 min.: P=0.0204, 30 min.: P=0.0009, 40 min.: 

P=0.0002, 50 min.: P<0.0001 and 60 min: P<0.0001). We also observed a significant difference in 

locomotor activity between SR142948A/saline and SR142948A/MDMA group, while no 

significant difference was found between saline/saline and SR142948A/saline treated animals 

(Figure 1B).  

As no effect was observed following administration of SR142948A (1 mg kg-1) alone, and that this 
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dose was able to totally blocked the hyperlocomotion induced by MDMA, 1 mg.kg-1 was chosen for 

the rest of the studies.  

 

Effect of SR142948A on the acquisition of MDMA-induced CPP: One-way ANOVA (F3,64=3.843; 

P=0.0136) revealed a significant treatment effect between the four groups of animals. Post hoc 

comparisons showed a significant effect of MDMA as compared to control group (saline/MDMA vs 

saline/saline: P=0.0125) and no significant effect of SR142948A pretreatment on the acquisition of 

MDMA-induced conditioned place preference (saline/MDMA vs SR142948A/MDMA: P=0.5671) 

(Figure 2A). 

Effect of SR142948A on the expression of MDMA-induced CPP: Comparison of preconditioning 

times spent in the drug-paired compartment did not show any significant difference between the 

groups, indicating the unbiased characteristics of the experimental design (Table 1). One-way 

ANOVA (F3,67=6.974; P=0.0004) revealed a significant treatment effect between the four groups of 

animals. Post hoc comparisons showed a significant effect of MDMA compared to control group 

(MDMA/saline vs saline/saline: P=0.0002). Interestingly the administration of SR142948A 20 min 

before the postconditioning test was able to antagonize the expression of this behavioral effect of 

MDMA (MDMA/saline vs MDMA/SR142948A: P=0.0233) (Figure 2B). Furthermore, no 

differences were found in the total number of entries in the two conditioning compartments for the 

four groups of animals, saline/saline, SR142948A/saline, Saline/MDMA and SR142948A/MDMA 

(number of entries = 125.3 ± 9.6, 111.7 ± 8.3, 127.5 ± 4.8 and 115.9 ± 7.6, respectively) (p = 

0.435). The total distances covered by the animals during the 18 minutes of the test in the four 

groups showed no differences for saline/saline, SR142948A/saline, Saline/MDMA and 

SR142948A/MDMA (total distance = 4524.94 ± 175.63, 4451.72 ± 285.05, 4913.65 ± 152.77 and 

4845.75 ± 259.18, respectively) (p = 0.397). These results indicate that the mice were not 

hypoactive with this dose of antagonist on the day of the test and that the observed effect is indeed 

due to a blockade of the expression of the MDMA-induced CPP. 

  10 

H
A

L author m
anuscript    inserm

-00278426, version 1



Effect of acute MDMA administration on Nts gene expression: Real time quantitative PCR was 

used to study the kinetics of Nts gene expression induced by acute injection MDMA in mouse 

striatum. Nts expression levels were analyzed at 1h, 2h, 6h 12h and 24h after acute MDMA 

injection. At 1h the expression level of Nts was similar in the control and MDMA-treated animals 

while one-way ANOVA showed a significant increase of Nts transcription (1.7 and 2.3 fold change) 

at 2h (F1,20=5.618; P=0.0279) and 6h (F1,22=18,246; P=0,0003) respectively. 12h and 24h after the 

MDMA injection the Nts expression level returned to basal (Figure 3). 

Effect of chronic MDMA administration on Nts gene expression: The effect of the MDMA 

administration schedule used in the CPP procedure was measured at the time of the post-

conditioning test (24h after the last injection) on Nts gene expression. One-way ANOVA 

(F1,21=5.695; P=0.0265) showed a significant effect of MDMA chronic treatment on Nts 

transcription. A 1.3-fold increase of the Nts transcript was found in MDMA-treated animals as 

compared to controls (Figure 4). 
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DISCUSSION 

Neurotensin was one of the genes found up-regulated by a single MDMA injection in mice striatum 

in a previous microarray study (Salzmann et al., 2006). Neurotensin is a 13 amino acids peptide, 

widely distributed in the brain, involved in several behavioral functions including locomotion, 

reward, stress and pain modulation (Geisler et al., 2006). In order to better understand the role of 

this peptide in the behavioral responses induced by MDMA, we studied the effects of a neurotensin 

receptor antagonist on MDMA-induced hyperlocomotion and CPP. We also measured the effects of 

acute and chronic MDMA on the expression level of neurotensin in mice striatum.  

Acute administration of MDMA in mice induced a locomotor hyperactivity, in good agreement with 

previous studies (Salzmann et al., 2003). This effect was blocked by the NTS1 receptor antagonist 

SR142948A. Interestingly, while SR142948A inhibited the MDMA-induced hyperlocomotion 

immediately after the injection, at this time point no modulation of the Nts mRNA level could be 

detected in the first hour. However acute MDMA injection induced a significant increase in Nts 

mRNA in the striatum at 2 and 6 hours after the injection. As neurotensin is stored in dense core 

vesicles and released in a calcium-dependent manner, our results suggest that this pre-existing 

endogenous neurotensin pool is involved in the MDMA-induced hyperlocomotor effect and not 

newly synthesized neuropeptide as a delay in the increase of mRNA level was observed. Moreover, 

it could be speculated that the mRNA increase observed might correspond to a cell response to 

restore rapidly the neurotransmitter pool. The increased release of endogenous neurotensin 

following systemic administration of MDMA could play a direct or indirect role in the 

hyperlocomotor effects induced by MDMA. In the striatum, it has been shown that neurotensin 

increases dopaminergic signalling mainly via the activation of a relatively high density of NTS1 

receptors located on striatal dopamine terminals (Ferraro et al., 1997). 

High densities of neurotensin immunoreactive nerve terminals nearby dopaminergic cell bodies 

have been observed within the ventral tegmental area where the peptide is also co-localized within a 

distinct group of dopaminergic neurons projecting to the cerebral cortex (Berger et al., 1992; 
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Hokfelt et al., 1984). These neuro-anatomic distributions suggest that neurotensin transmission is 

also relevant in regulating dopaminergic neuronal pathways involved in reward at the level of the 

midbrain dopamine cell bodies well known to play a key role in the effects induced by drugs of 

abuse. Studies have provided evidences of the rewarding effects of MDMA in different animal 

models, such as self-administration and conditioned place preference (Salzmann et al., 2003; Trigo 

et al., 2006). Thus it was also interesting to evaluate whether the neurotensin receptor antagonist 

was able to modify the rewarding effects of MDMA evaluated in the CPP. This model is based on 

the fact that the pairing of neutral distinctive environmental stimuli with a drug (primary reward) 

results in an acquired preference for those specific stimuli (secondary or conditioned reward). The 

CPP consists of an acquisition phase, and an expression phase in which drug-free animals are tested 

for their preference for the environment previously paired with the drug. Different neurochemical 

mechanisms appear to mediate the acquisition and expression of this incentive learning, and it has 

been shown in the case of amphetamine and morphine that the neurons involved in the expression 

and acquisition of CPP are anatomically distinct at least within the nucleus accumbens (Fenu et al., 

2006; Sellings and Clarke, 2003). Thus it was interesting to investigate the effect of SR142948A on 

both these phases using MDMA as primary reward. The NTS1 receptor antagonist had no effect on 

the acquisition but blocked the expression of MDMA CPP. 

This could suggest that NTS1 receptors are not involved in mediating the rewarding effects of 

MDMA, while they play a key role in the behaviour elicited by conditioned reward to MDMA-

paired stimuli. In line with this we found that, at the time of the test (expression), Nts mRNA level 

was up-regulated in the striatum of the mice. It is unlikely that the NTS1 antagonist blocked the 

expression of MDMA CPP because of aversive properties, as repeated administration of 

SR142948A did not induce significant effects.  

These results suggest that neurotensin may be a neural substrate for reward expectation. A signal 

may be delivered when the animal is placed in the drug-paired compartment, increasing the release 

of neurotensin, which through activation of NTS1 receptors may influence the processing of 
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predictions and the choice of reward-maximizing action. This process may directly or indirectly 

involved other neurotransmitter systems, as it has been shown for instance that glutamate 

transmission play a key role in expression of morphine or cocaine CPP (Cervo and Samanin, 1995; 

Harris et al., 2004), as well as dopamine (Garris et al., 1999; Schultz et al., 1997) or enkephalins 

(Mas Nieto et al., 2001). It is possible that activation of NTS1 receptors is effective only at a critical 

period in which animals must remember the place and cues associated with drug discrimination.  

In conclusion, our results show that endogenous neurotensin is involved in both MDMA-induced 

hyperlocomotion and CPP. Although acute injection of MDMA up-regulates transiently Nts mRNA 

levels in mice striatum, it is the endogenous pool of the peptide that is involved in the locomotor 

activity induced after acute MDMA. Moreover, neurotensin receptors activation is important for the 

expression but not the acquisition of MDMA-induced CPP. Repeated MDMA injections following 

the CPP pattern induced an up-regulation of Nts mRNA in the striatum. In order to determine 

whether this modulation is specific to the striatum, studies of Nts mRNA levels in several structures 

of the mice brain are currently under investigation in our laboratory. 
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FIGURES LEGENDS  

Figure 1. Effect of 2 doses of SR142948A on MDMA-induced hyperlocomotion. A) SR142948A 

(0.25 mg kg-1, i.p) and B) SR142948A (1 mg kg-1; i.p.). Mice were injected with SR142948A or 

saline followed 20 min later by MDMA (9 mg kg-1; i.p.) or saline (n=10-12/group). The motor 

activity was monitored immediately after MDMA administration each 10 min for 60 min. Data 

represent means ± s.e.m. of photobeam disruptions (n=12/goup). **P<0.01, ***P<0.001 vs 

SR142948A/MDMA group, #P<0.05, ##P<0.01, ###P<0.001vs MDMA/saline group (Fisher-

PLSD). 

Figure 2.A) Effect of SR142948A on the acquisition of MDMA-induced CPP. Mice (n=17-

19/group) received SR142948A (1 mg kg-1; i.p.) or saline 20 min before MDMA (9 mg kg-1; i.p.) or 

saline during the conditioning phase. B) Effect of SR142948A on the expression MDMA-induced 

CPP. Mice (n=17-19/group) received SR142948A (1 mg kg-1; i.p.) or saline 20 min before being 

placed in the experimental apparatus during the postconditioning phase. Data are expressed in 

scores calculated as the difference between preconditioning and postconditioning time spent in 

drug-paired compartment (means ± s.e.m.). *P<0.05, ***P<0.001 vs saline/saline group; #P<0.05 

vs MDMA/saline group (Fisher-PLSD). 

Figure 3. Kinetics of the effect of acute MDMA injection (9 mgkg-1; i.p.) on Nts gene transcription. 

Mice were killed 1, 2, 6, 12 and 24 hours after MDMA injection. The mRNA levels were measured 

as fluorescent intensities using quantitative real-time PCR and normalized to Hprt mRNA levels. 

Values represent fold change in Nts gene expression, calculated as the ratio + SEM of the means 

values of MDMA-treated animals versus saline-treated at each time point (n=12/group). *P<0.05 

and ***P<0.001 MDMA vs saline group (Fisher-PLSD).  

Figure 4. Effect of chronic MDMA administration on Nts gene expression in striatum. Mice (n=11-

12/group) were treated with MDMA (9 mg kg -1) or saline following the chronic administration 

schedule used to induce CPP (see methods for details). Mice were killed and brains were removed 
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and dissected 24 hours after the last injection. Data represent means ± SEM. of Nts/Hprt ratio. 

*P<0.05 vs saline group (Fisher-PLSD).  
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Table I. Time spent in drug-associated compartment during the preconditioning and the 
testing phase  
 

 Preconditionning (s) Testing (s) 

Saline/Saline 273.1 + 4 257.28 + 10.88 

SR142948A/Saline 262.9 + 5 252.8 + 9 

Saline/MDMA 263.7 + 6 314.8 + 5* 

SR142948A/MDMA 274.1 + 8 296.4 + 8 

 
Effect of SR142948A pre-treatment of the expression of MDMA-induced place preference. 
Values are the mean+s.e.m. from 17-19 mice per group. *P<0.05 vs preconditioning phase 
(Fisher-PLSD). 
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