F. Wong, C. Janeway, and J. , The Role of CD4 vs. CD8 T Cells in IDDM, Journal of Autoimmunity, vol.13, issue.3, pp.290-295, 1999.
DOI : 10.1006/jaut.1999.0322

T. Dilorenzo, . Serreze, and . Dv, The good turned ugly: immunopathogenic basis for diabetogenic CD8+ T cells in NOD mice, Immunological Reviews, vol.52, issue.1, pp.250-263, 2005.
DOI : 10.1016/S0168-8227(00)00225-4

F. Wong, I. Visintin, L. Wen, R. Flavell, C. Janeway et al., CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells, Journal of Experimental Medicine, vol.183, issue.1, pp.67-76, 1996.
DOI : 10.1084/jem.183.1.67

M. Nagata, P. Santamaria, T. Kawamura, T. Utsugi, and J. Yoon, Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta-cells in nonobese diabetic mice, J Immunol, vol.152, pp.2042-2050, 1994.

R. Graser, . Dilorenzo, . Tp, F. Wang, . Christianson et al., Identification of a CD8 T Cell That Can Independently Mediate Autoimmune Diabetes Development in the Complete Absence of CD4 T Cell Helper Functions, The Journal of Immunology, vol.164, issue.7, pp.3913-3918, 2000.
DOI : 10.4049/jimmunol.164.7.3913

A. Amrani, J. Verdaguer, P. Serra, S. Tafuro, R. Tan et al., P: Progression of autoimmune diabetes driven by avidity maturation of a T-cell population, Nature, vol.406, issue.6797, pp.739-742, 2000.
DOI : 10.1038/35021081

T. Dilorenzo, . Lieberman, . Sm, T. Takaki, S. Honda et al., During the Early Prediabetic Period in NOD Mice, the Pathogenic CD8+ T-Cell Population Comprises Multiple Antigenic Specificities, Clinical Immunology, vol.105, issue.3, pp.332-341, 2002.
DOI : 10.1006/clim.2002.5298

J. Trudeau, . Kelly-smith, C. Verchere, J. Elliott, J. Dutz et al., R: Prediction of spontaneous autoimmune diabetes in NOD mice by HAL author manuscript inserm-00266516

B. Krishnamurthy, . Dudek, . Nl, . Mckenzie, . Md et al., Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP, Journal of Clinical Investigation, vol.116, issue.12, pp.3258-3265, 2006.
DOI : 10.1172/JCI29602DS1

M. Nakayama, N. Abiru, H. Moriyama, N. Babaya, E. Liu et al., Prime role for an insulin epitope in the development of type???1 diabetes in NOD mice, Nature, vol.48, issue.7039, pp.220-223, 2005.
DOI : 10.1038/nature03523

M. Nakayama, . Beilke, . Jn, J. Jasinski, M. Kobayashi et al., Priming and effector dependence on insulin B:9???23 peptide in NOD islet autoimmunity, Journal of Clinical Investigation, vol.117, issue.7, pp.1835-1843, 2007.
DOI : 10.1172/JCI31368

D. Daniel, R. Gill, N. Schloot, and . Wegmann, Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice, European Journal of Immunology, vol.178, issue.4, pp.1056-1062, 1995.
DOI : 10.1002/eji.1830250430

D. Daniel, . Wegmann, and . Dr, Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23)., Proceedings of the National Academy of Sciences, vol.93, issue.2, pp.956-960, 1996.
DOI : 10.1073/pnas.93.2.956

D. Laforgue, S. Caillat-zucman, J. Guillet, J. Carel, S. Muller et al., C: Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients, Proc Natl Acad Sci, vol.102, pp.10581-10586, 2005.

Q. Ouyang, . Standifer, . Ne, H. Qin, P. Gottlieb et al., Recognition of HLA Class I-Restricted Beta-Cell Epitopes in Type 1

N. Standifer, Q. Ouyang, C. Panagiotopoulos, . Verchere, . Cb et al., Identification of Novel HLA-A*0201-Restricted Epitopes in Recent-Onset Type 1 Diabetic Subjects and Antibody-Positive Relatives, Diabetes, vol.55, issue.11, pp.3061-3067, 2006.
DOI : 10.2337/db06-0066

P. Blancou, R. Mallone, E. Martinuzzi, S. Severe, S. Pogu et al., Immunization of HLA Class I Transgenic Mice Identifies Autoantigenic Epitopes Eliciting Dominant Responses in Type 1 Diabetes Patients, The Journal of Immunology, vol.178, issue.11, pp.7458-7466, 2007.
DOI : 10.4049/jimmunol.178.11.7458

R. Mallone, E. Martinuzzi, P. Blancou, G. Novelli, G. Afonso et al., CD8+ T-Cell Responses Identify ??-Cell Autoimmunity in Human Type 1 Diabetes, Diabetes, vol.56, issue.3, pp.613-621, 2007.
DOI : 10.2337/db06-1419

E. Martinuzzi, . Lemonnier, . Fa, C. Boitard, and M. , T Cell Responses in Human Type 1 Diabetes, Annals of the New York Academy of Sciences, vol.57, issue.1, 2008.
DOI : 10.1196/annals.1447.015

K. Herold, W. Hagopian, J. Auger, E. Poumian-ruiz, L. Taylor et al., Anti-CD3 Monoclonal Antibody in New-Onset Type 1 Diabetes Mellitus, New England Journal of Medicine, vol.346, issue.22, pp.1692-1698, 2002.
DOI : 10.1056/NEJMoa012864

B. Keymeulen, E. Vandemeulebroucke, A. Ziegler, C. Mathieu, L. Kaufman et al., Insulin Needs after CD3-Antibody Therapy in New-Onset Type 1 Diabetes, New England Journal of Medicine, vol.352, issue.25, pp.2598-2608, 2005.
DOI : 10.1056/NEJMoa043980

. Brooks-worrell, . Bm, . Starkebaum, . Ga, C. Greenbaum et al., JP: Peripheral blood mononuclear cells of insulin-dependent diabetic patients respond to multiple islet cell proteins, J Immunol, vol.157, pp.5668-5674, 1996.

V. Seyfert-margolis, . Gisler, . Td, A. Asare, R. Wang et al., Analysis of T-Cell Assays to Measure Autoimmune Responses in Subjects With Type 1 Diabetes, Diabetes, vol.55, issue.9, pp.2588-2594, 2006.
DOI : 10.2337/db05-1378

N. Danke, . Koelle, . Dm, C. Yee, S. Beheray et al., Autoreactive T Cells in Healthy Individuals, The Journal of Immunology, vol.172, issue.10, pp.5967-5972, 2004.
DOI : 10.4049/jimmunol.172.10.5967

J. Yang, N. Danke, D. Berger, S. Reichstetter, H. Reijonen et al., Islet-Specific Glucose-6-Phosphatase Catalytic Subunit-Related Protein-Reactive CD4+ T Cells in Human Subjects, The Journal of Immunology, vol.176, issue.5, pp.2781-2789, 2006.
DOI : 10.4049/jimmunol.176.5.2781

V. Viglietta, . Kent, . Sc, T. Orban, . Hafler et al., GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes, Journal of Clinical Investigation, vol.109, issue.7, pp.895-903, 2002.
DOI : 10.1172/JCI0214114

S. Arif, . Tree, . Ti, . Astill, . Tp et al., Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health, Journal of Clinical Investigation, vol.113, issue.3, pp.451-463, 2004.
DOI : 10.1172/JCI19585

P. Monti, M. Scirpoli, A. Rigamonti, A. Mayr, A. Jaeger et al., Evidence for In Vivo Primed and Expanded Autoreactive T Cells as a Specific Feature of Patients with Type 1 Diabetes, The Journal of Immunology, vol.179, issue.9, pp.5785-5792, 2007.
DOI : 10.4049/jimmunol.179.9.5785

E. Martinuzzi, M. Scotto, E. Enée, J. Ribeil, P. Van-endert et al., Serum-free culture medium and IL-7 costimulation increase the sensitivity of ELISpot detection, Journal of Immunological Methods, vol.333, issue.1-2, 2008.
DOI : 10.1016/j.jim.2008.01.003

URL : https://hal.archives-ouvertes.fr/inserm-00266553

Y. Hassainya, F. Garcia-pons, R. Kratzer, V. Lindo, F. Greer et al., Identification of Naturally Processed HLA-A2--Restricted Proinsulin Epitopes by Reverse Immunology, Diabetes, vol.54, issue.7, pp.2053-2059, 2005.
DOI : 10.2337/diabetes.54.7.2053

T. Takaki, . Marron, . Mp, C. Mathews, . Guttmann et al., HLA-A*0201-Restricted T Cells from Humanized NOD HAL author manuscript inserm-00266516, version 1 HAL author manuscript inserm-00266516, version 1 epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4, J Clin Invest, vol.104, pp.1449-1457, 1999.

E. Jaeckel, L. Klein, and N. Martin-orozco, Normal Incidence of Diabetes in NOD Mice Tolerant to Glutamic Acid Decarboxylase, The Journal of Experimental Medicine, vol.157, issue.12, pp.1635-1644, 2003.
DOI : 10.1084/jem.20011845

A. Kubosaki, S. Nakamura, and A. Notkins, Dense Core Vesicle Proteins IA-2 and IA-2??: Metabolic Alterations in Double Knockout Mice, Diabetes, vol.54, issue.Supplement 2, pp.46-51, 2005.
DOI : 10.2337/diabetes.54.suppl_2.S46

E. Bonifacio, M. Atkinson, G. Eisenbarth, D. Serreze, T. Kay et al., International Workshop on Lessons From Animal Models for Human Type 1 Diabetes: Identification of Insulin but Not Glutamic Acid Decarboxylase or IA-2 as Specific Autoantigens of Humoral Autoimmunity in Nonobese Diabetic Mice, Diabetes, vol.50, issue.11, pp.2451-2458, 2001.
DOI : 10.2337/diabetes.50.11.2451

L. Wicker, . Chen, . Sl, . Nepom, . Gt et al., Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele, DRB1*0401., Journal of Clinical Investigation, vol.98, issue.11, pp.2597-2603, 1996.
DOI : 10.1172/JCI119079

G. Mcdevitt, Identification of immunodominant T cell epitopes of human glutamic acid decarboxylase 65 by using HLA-DR(alpha1*0101,beta1*0401) transgenic mice, Proc Natl Acad Sci, vol.94, pp.8082-8087, 1997.

M. Honeyman, . Stone, and H. Nl, LC: T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents, Mol Med, vol.4, pp.231-239, 1998.

C. Watts and L. , Suppressive effect of antibody on processing of T cell epitopes, Journal of Experimental Medicine, vol.178, issue.4, pp.1459-1463, 1993.
DOI : 10.1084/jem.178.4.1459

H. Reijonen, . Daniels, . Tl, A. Lernmark, . Nepom et al., GAD65-specific autoantibodies enhance the presentation of an immunodominant T-cell epitope from GAD65, Diabetes, vol.49, issue.10, pp.1621-1626, 2000.
DOI : 10.2337/diabetes.49.10.1621

N. Bernasconi, E. Traggiai, and L. , Maintenance of Serological Memory by Polyclonal Activation of Human Memory B Cells, Science, vol.298, issue.5601, pp.2199-2202, 2002.
DOI : 10.1126/science.1076071

M. Prlic, M. Williams, and . Bevan, Requirements for CD8 T-cell priming, memory generation and maintenance, Current Opinion in Immunology, vol.19, issue.3, pp.315-319, 2007.
DOI : 10.1016/j.coi.2007.04.010