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Abstract— A new family of methods, named PEP (Phase region providing a measure of slice goodness. The algorithm
Estimation using Polyspectrum slices), for the reconstruction of presented in [21] proposes such a procedure, named the 1D

the Fourier phase of a complex LTI system excited by a white fraqyency content. This selection procedure potentiaifbtes
non-Gaussian input is proposed. More precisely, we propose two

subfamilies of methods, theq-PEP (¢ > 3) and (g1, qs)-PEP  US FO avoid regipns where polys_pectrum estimates gxhigh hi
(g2 > ¢ > 3) algorithms. The ¢-PEP methods exploit the best Variance or regions where the ideal polyspectrum is exgecte
Two-Dimensional (2D) slice of the datag-th order spectrum. to be zero, as in the case of band-limited systems. Another

The originality of the (¢1,¢2)-PEP methods consists of exploiting way to describe and to differentiate algorithms named leefor
simultaneously one 1D slice of thegi-th order spectrum and  .,nqists of classifying them according to their recursive o

one 2D slice of theg-th order spectrum. These new algorithms . .
are easy both to implement and to use. Moreover, the asymptotic "ON"récursive nature. Indeed, the algorithms [3] [1] [12][

unbiasedness and consistency of these methods are demonsgcht are recursive in nature: they calculate, sequentially pitiese
Eventually, computer simulations show that the PEP algorithms values under the assumption that the first value is equal to

exhibi; in general b.ett.er performances than classical methods zero. Methods proposed in [13] [7] [17] [19] [21] are not
especially for band-limited systems. recursive: they estimate all phase values at the same time.
Eventually, methods presented in [3] [13] [7] [17] [19] régu

an additional step of phase unwrapping, in contrast to those
introduced in [1] [10] [20] [21].

System reconstruction and especially phase recovery is @&ach of these methods present some limitations. Methods
significant problem which arises in many applications, sash which use the whole polyspectrum information [3] [1] [13]
data communications [2], seismic, speech processing,aaledi17] [19] are generally less effective on systems which have
diagnosis and other deconvolution problems [5]. More partiband-limited frequency response as shown in [21]. Besides,
ularly, in astronomy, high resolution imaging from groundRangoussi et al. [17] and Lii et al. [10] have developed
based telescopes involves a phase recovery to overcome alyarithms which are only valid for real systems. In additio
severe atmospheric degradation [12]. the method given in [20] does not allow for handling a linear

Because physical systems are mostly non-minimum phasgstem whose input sequence is symmetrically distributed.
we consider, in our paper, the phase retrieval problem ofa ndt should be noted that since methods [3] [1] [10] [20]
minimum phase Linear Time Invariant (LTI) system excitedre recursive in nature, phase estimation errors in the low-
by an i.i.d. (independently and identically distributediro frequency samples can propagate to high-frequency samples
mean and non-Gaussian input. In such a context, the phasal. Finally, computer results presented in [20] [21] shibxat
recovery of a non-minimum phase system can be achiewb@ performances of algorithms proposed in [20] [21] depend
from the output using higher order spectra (polyspectran the selected 1D polyspectrum slice.

Indeed, in opposition to the power spectrum which preservesin order to overcome the limitations of the previous al-
only the magnitude information of systems, the polyspectgorithms, a new family of phase retrieval methods, based
also preserve the true phase character of systems. Sevenamultiple higher order spectrum slices, named PEP (Phase
methods for phase reconstruction using polyspectra hase b&stimation using Polyspectrum slices), is proposed. A painhe
developed (see [15] [16] for a review). These methods cafgorithms which are easy to use and to implement is provided
be divided in two subcategories: those that use the whdlbese algorithms can handle any kind of non-minimum phase
g-th order ¢ > 3) spectrum information [3] [1] [13] [17] SISO (Single Input Single output) systems, they are notrrecu
[19] and those that use only some part of this informatiosive and do not estimate all the phase values at the same time.
such as one or two fixed One-Dimensional (1D) polyspectruiihey estimate each phase value independently from thesother
slices [10] [7] [20] [21]. The latter algorithms assume thatlore precisely, we propose two subfamilies of methods, the
there is a criterion for selecting the most useful polyspest ¢-PEP ¢ > 3) and @1, ¢2)-PEP @2 > ¢1 > 3) algorithms.

I. INTRODUCTION
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The ¢-PEP methods exploit the best Two-Dimensional (2DY)by ¢’ +7 wherer is a delay or when we multiply the impulse
slice of the dateag-th order spectrum. The originality of theresponse and the input source by a complex exponential and
(¢1, ¢2)-PEP methods is the simultaneous exploitation of orits conjugate, respectively.

1D slice of theg;-th order spectrum and one 2D slice of the

q2-th order spectrum. This joint exploitation of two distinet g cymulants and polyspectra

th order spectra allows for a better processing of banddieni
systems. Computer results show that the ¢.)-PEP methods a4 1 b am ) s alm +7.)*} be theg-th (g >3)

rel nsitiv wron lection of th I :
are less se sitive to a wrong selection of the best po yﬂ”f’“ order cumulant [14] of(m), wherer terms are not conjugated
slice. Finally, note that all the proposed methods require a

additional phase unwrapping step. and g —r terms are conjulgated: Under assumpt{éi) :?u?d
. . L . A2), process{a(m)}.,cz is stationary. Consequently, itis
The paper is organized as follows: in section Il, the phage .
order cumulants do not depend on time and can be

recovery problem is stated and the definition of thth (¢ > g—r .
2) order spectra is recalled. In section lll, the PEP apprc'nach.denme{j YOS (71, . -, 7—1). Then, under assumpliqA3),

presented and its asymptotic consistency analysis is edvi it |s.p055|ble to define the-th order spectrum as following

Section V gives computer results of some PEP algorithms a[r1ld5]'

classical methods, and a conclusion is given in section VI. Definition 1: Theg-th order spectrum is given by thg—
1)-dimensional Discrete Fourier Transform (DFT) of theh

Il. PROBLEM FORMULATION AND STATISTICS order cumulant

A. Problem statement Using assumptiong§Al), (A2) and the multilinearity prop-

It is assumed throughout the paper thatcomplex samples €rty shared by all moments and cumulants [14], ¢Hb order
of a discrete random procegs(im)},.c z are observed, and SPectrum of the output data can be related to ¢t order
that each random variable(m) satisfies the following LTI marginal source cumulant, as shown by property 1:

Let O (m, 71, ..., Tg—1) = Cum{z(m), x(m + 71), . ..

model: Property 1: Let{a(m)}ncz be the discrete random pro-

a(m) = Z h(€)(m—£)+1m) () cess given by (1). ltg-th order spectrum satisfies the following
tez equality:
where {{m)}mez and {{m)},,cz represent the input and ., Cva—rag
additive noise sequences, respectively, and where: Iha (@i wem1) = OF T H—wn * wq—lﬁ-{(wlz
1t Hwr—1)H(—wr)" ... H(—wq-1)" (3)
def iwm

Hm) = or . Hw) ™" dw ) where C1 " Lof C15"0,...,0) and H denote theg-th order

is the m-th tap of the LTI system whose frequency responsir;narginal source cumulant associated with null delays ared th
m- .

: AP stem frequency response, respectively.

is H. The problem dealt with in this paper can be formulate 9 y 1esp P y

as following: Note that, in practical contexts, cumulants and spectra

cannot be exactly computed and they have to be estimated

. _ ipn(w) . . .
Problem 1: LetHw) = |Hw)|e*** be the frequency from data samples using some estimation procedures [1}] [15

response at pointv of the considered non-minimum phas
LTI system, find the phase responeg, of the system only

from samples of the output sequeraém)},.c z. . ALGORITHMS

he followi i h | h A. Theq-PEP methodsq¢(> 3)
The following assumptions are then placed on the system andl'his approach exploits one 2D slice of the output dath

the signals involved in order to solve problem 1. order spectrun’?—" of the output sequence, that is, the matrix

(A1) {(m)}mez is an iid. non-gaussian, stationary an@xtracted fromI'Z"" by fixing ¢—3 frequencies and varying
ergodic complex sequence; the two latter frequencies betweefr. Although the3-PEP

(A2) {v(m)}mez is stationary, ergodic, gaussian with comnethod was briefly presgnted i_n [9] and since an e>_<tension to
ponents in the complex field, and independent of thsth order > 4) spectra is straightforward, we only illustrate
input source; the q-PEP method fO[]:4.

(A3) All ¢-th (g > 2) order marginal source cumulants are Let 3, be the phase of the data trispectrii,. More-
absolutely summable and all-th order spectra are OVer, we will consider discrete frequencies in the sequel, i
non-zero in the frequency band over which the chary = (27/N)k; with k; €{0,...,N—1} andj € {1,...,q -
nel response is non-zero (higher order cumulants ahd By omitting the factoRr/N, the relationship between the
polyspectra will be described hereafter): phases of the quantities involved in (3), far,7) = (4,2), is

(A4) The LTI system is stable (i.g.i(1n)} ez is absolutely given by:
summable, which guarantees the existence of a bounded wiz(k‘h ko, k) = fg,s + dn(—ky — ko — k3) +
frequency response) with complex taps. . & X @)

It is noteworthy that a unique solution of problem 1 can be Onlkr) = Sn(—kz) = dn(—ks)
found only up to a linear phase. Indeed, as shown in equat'mvheregﬁs is the phase of the marginal source cumul@@fs.

(1), the expression of(m) does not change when we replacéote thatg% . IS a multiple ofr sinceCQ% s IS necessarily a real
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number. Letks be fixed to an integery € {0,1,...,N —1}, (0 < ky,ko, k3 < N), an estimate;(/?%i, of 1/13,1; up to an
using a simple measure of 2D slice goodness which will lzelditive constant:

presented in section IlI-C. Because the-periodicity of H 72u 2

implies the N-periodicity of its discrete phasg, the sum of ook Kz, k) = W o (s b, ks) + 27, (10)
V3 ,(.,.,a) over the discrete frequencids (0 <k, < N) is wherel, is an unknown integer constant. An estimatg, of
given for each discrete frequengy (0<k; <N) by: ¢r Up to an additive constani(ca) zfi —¢(—a)+2nI,, may
then be derived by i) fixings to «, ii) summing overk, and

iii) dividing by N. A second solution can be obtained using a
2D phase unwrapping process [8] of the funct@x(., Q)
whereq is fixed. Then, we get, for every, ko (0 < ki, ke <
Although equation (5) seems to provide a solution for th&), an estimate&%f;(.,.,a) of ¥3 ,(.,.,«) up to an additive
estimation of¢; from lb%m, it is not a convenient formula constant:

N—-1
>3 (k1 ko, @) = N(gu(kr) + &, — dn(—a))  (5)

ko=0

for phase re_trleval. Inde_:ed, '_[he_ trlspectr~u2m pha/ﬁe, is @%i(k‘bkz,a) :wiw(kl,kg,a)—i-%[;(a) (11)
generally estimated by its principal value; ., given, for
everyky, ko, ks (0 < ky, ko, ks < N), by: where I, (o) is an unknown integer constant. An estimate,
~ on Of ¢y can thus be derived, from (11), using the following
V3 o (k1 ko, k) = equation, for everys; (0 < k; < N):
arctan(S(I'3 , (k1, k2, k3)), R(C3 . (k1, ko, k3)))  (6) } =
o dulke) € 5 Y U3k ko 0) = G(k) + (@) (12)

where® and & refer to as the real and imaginary parts, and k2—0

arctan is the four-quadrant arc tangent operator that forc@\?‘nere the constant’

1 H H / — 2 _
the angle functiom/)gm to lie betweentr radians. These () Is given bya'(a) =&, —d(—a)+

2rI! (o). The third and last approach consists of applying a
®D phase unwrapping procedure to the left term of equation
(8) and dividing the result byN. We then obtain a new
estimate ¢, of ¢, up to an additive constant’(«) :gﬁs—
(k1 ko, ks) € {0,1,..., N — 113 ¢(—a)+2rI"”(a)/N whereI”(a) is an unknown integer. For
~5 9 the sake of convenience, the thre®EP approaches presented
V30 (k1, k2, ka) = 3 o (K, ko, ks) + 20k, k2, ks) - (7) previously will be referred, in the sequel, to 4PERp, 4-
PEBp and4-PERp, respectively. Besides, sincegath order
spectrum ¢ > 3) may contain several 2D slices of sufficient
goodness, an improved final phase estimate can be obtained
by averaging. In such a case, the averaging can be done in
thee" domain just before the division h. Moreover, if the
Zﬁ;é @z(khkz,a) = N(¢n(k1) + &2, — dn(~a)) filter impulse response has taps with values in the complex
1o Z;ICV_—%J k1, k2, @) 8) field, a non-zero value has to be chosendoindeed, ifa is
2= nul then equation (5) shows thai,(0) cannot be estimated.
The discrete phase functiogy, can thus be extracted fromOn the other hand, when the system is regal0) is equal
equation (8) provided that @hase unwrappingscheme is to zero. Consequentlyy can be set to zero and the constants
performed before extraction. In other words, the following(0), a’(0) or a”(0) can be deduced from;(0). Note that
phase unwrapping problem has to be solved: for real systems, the constant)) anda’(0) are necessarily

- multiples of 7 since¢? . is a multiple ofr.
Problem 2: Letg and be a non-zero integer and a phase P i b2 P m

function of {0, 1,..., N—1}" into [—m, 7], respectively, find B. The ¢, ¢,)-PEP methodsg > ¢ >3)

:Eetﬁznase Jump fugctlr?d Off {0’3’2' ‘ ,_N—lgq.lnto Z such The originality of this algorithm is the joint exploitation
at the unwrapped phase functigif given by of a 1D slice of oneg;-th order spectrum and one 2D slice
Vk e {0,1,...,N — 1}9, J}u(k) _ 1/3(/9) +ordk) (9) of the ¢o-th orQer spectrungz > q1 > 3) As an example,

the approach is presented hereafter using the foyith-@)

is as continuous (smooth) as possible. and sixth ¢ = 6) order spectra, named trispectrum and

] ) . quintuspectrum of the data respectively. The method usiag t
Some methods can be found in the literature in order {@iq and the fourth orders was briefly investigated in [djeT
solve problem 2 (see [8] and [6] foy = 2 and ¢ = 3, extension to the(gy, g)-th order, such agqi,q2) = (4,5)
respectively). However, note that problem 2 has not a Uniqye,, > ¢, > 5, can be easily realized from the following
solution, but it has a class of solutions, pairwise equahiwit. jiscussion.
multiple of 27. Consequently, in the light of equation (8), the g, (¢2,72) = (6,3), property 1 implies, for every
unwrapping step can be achieved at three different levetd) €y, ko, ks, Ky, ks (0 < ky, ko, ks, ka, ks < N):
one leading to a particular phase retrieval approach. Tke fir 3
approach consists in applying a Three-Dimensional (3D¥eha U3 ok, ks, K3, kay ko) = dn(—ki —ks — ks —ky— ko) +
unwrapping scheme [6] t¢3 , to obtain, for everyk,, ks, ks Ok Hdn(ks) — dn(—ks) — dn(—ka) — dn(-k2) +3 ,  (13)

the absolute phase is wrapped into the intefval 7] by the
following non-linear process:

where [ is an integer function that forceé%x to belong to

[, @. Thus, fixingks to « in (7), summing the result over
the discrete frequenciels, (0 < k2 < N) and using (5), we
have for everyk; (0 < k; < N):



wherez/;gl, is the phase of the discrete output quintuspectruMore precisely, in order to select the appropriatéh order
ngx and ggs is the phase associated with the margingl > 3) 2D slice, we propose to choose the sef,( .., aq_3)
source cumulant’ . According to the cumulant definition, it which maximizes the following criterion:

% appears tha€’3 , is a real number and thug , is a multiple | N-1N-1

g of . B.ased on the difference between equations (13) and (g, (ay,. .. ’0‘4—3):ﬁz Z D97 (R kg,unse - 0 —3)|

= we get: ke =0k3=0

g 8 o(k1, ks, kg, kay ko) — 03 (K, ko, kg) = €3 . — €3 (16)
3 V30 (K1, ks, ks kas ko) =y o (Kis ko, k) =85 =85 + This procedure implies the estimation of all the¢h order 2D
o n(—k1—ks— ks —kya—k2) — dn(—k1—ka—k3) + (14) slices. Another way, less expensive in terms of computation
& bu(ks) —pn(—ka) cost, consists of i) choosing the frequency indexvhich

S i ) __maximizes the modulus of the power spectriitn, and i)
§= Next, ko, ks and k4 have to be fixed to particular frequenC|e$ixing the set &1, ..., a,_3) 1o (@, ..., @). This idea was first

a, f andy (0<a, 3,7 <N), respectively, chosen using boths,ggested by Pozidis et al. [21] in order to select the peist
the 1D and 2D frequency content criteria defined in sectibn g ger 1D slice.

C. Summing (14) over all the discrete frequendieg0 < k; <
N —1), it can be easy shown that, for every (0 < k5 < N): |y, AN ANALYSIS OF ASYMPTOTIC CONSISTENCY OF THE

Zi\fl;g ng(klvk57ﬂy’y7a) _¢%x(klvavﬂ) = (15) . . . PEPAtPPROACH . )
Non(ks) — on(—7) + &3, — & ) We provide, in this section, an analysis of the asymptotic

. behavior of the4-PEBp and {,6)-PEBp methods when
Therefore, the phase responsgcould be estimated from the Flynn's algorithm is used in order to achieve a 2D phase

previous equation. However, as it was said |n.sect|on III—Au wrapping [8]. Indeed, Flynn's method is one of the most ro-
the output polyspectrum phase has to be estimated thro

: incipal val So. i d btain th h t algorithms with respect to false discontinuities {@jich
Its principal value. So, in order to obtain the true phase yp, q appear in the wrapped phase because, for instance, of a

to an additive constant, we must perform an additional st . :
' or frequency sampling of the corresponding polyspectrum
of phase unwrapping (see problem 2). This problem can %% a y ping P ¢ Poysp

resolved in several ways, depending on the level where the Prelimi |
unwrapping scheme is applied to the output quintuspectrlﬁn re @mary results _
and trispectrum phases. For the sake of convenience, in thié\s a first result, let's recall the following lemma [4]:

section we only present two different approaches. The ﬁrStLemma 1: Letl9~" be the estimate of thg-th order
one gonsjsts of applying a_2D phase~unwrappipg method (5) > 9) spectrum?laig;’", of a stationary-ergodic process
function ¢5 (., .. 5,7, ) defined fromy;, by fixing some 1)1 " defined as a weighted smoothing of dhti order
frequencies to3,y and o respectively. In fact, since:$ , is @ periodogram. By properly choosing the weighting sequence
function of five variablesy3 (..., 8,7, a) is obtained from with increasing sample size, and under suitable regularity
v3, by fixing its three last variables, namehy, k4, and conditions, the estimat‘é“g—; is asymptotically unbiased and
ko (see equation (14)), t@, ~ and a respectively. So the consistent.
unwrapped function)s X, ., 3,v,a) and®? (., a, ) (where
15% ., a, B) is obtained from&%w by fixing k2 and k3 to «
and g3, respectively) are subtracted and then they are sum
over all the frequencies; (0<k; <N-—1). Finally, the result
is divided by NV in order to estimatep, up to an additive
constant. The second approach consists of i) summing uprheorem 1: Under the assumptions of lemma 1, the
the functiony3 (..., 3,7,a) — 93 (., a, B) with respect to wrapped phase)d,", of [ converges in probability to the
its first variable,k;, over all the discrete values belonging tayrapped phasey?;’, of I'4".
{0,1,..., N —1}, ii) unwrapping the result using a 1D phase ] i ,
unwrapping process, and iii) dividing the result by In the A proof is given in appendix VII-A. The following corollary
sequel, these two methods will be referred to as the)¢ ©nsues from theorem 1.
PERp and @, 6)-PERp algorithms, respectively. Corollary 1: Under the assumptions of lemma 1, the
Moreover, as explained in the previous section, one shoyglapped phasezf;g;’“, of [9—" is asymptotically unbiased and
be cautious about the choice ¢f Indeed, if the taps of the -gnsistent. ’ ’
impulse response are in the complex field, a non-zero value ) ) ) o
has to be chosen foy in order to be able to estimatg, (0). The p_roof is then stralghtforwarq since the phas_e estlmat|_0
error is bounded. Before analyzing the asymptotic properti
of the estimateV ¢, of N ¢, when4-PERp, and ¢, 6)-PERp

] N ) are used, let’s consider the following result:
One of the particularities of the PEP methods with regard

to the others is the need of a "good” 2D polyspectrum slice. Theorem 2: Letar = (au,...,q-3), Y}.""(.,.,a) and
Therefore, we decided to extend the criterion proposed by _""(.,.,a) be ag—3-tuple of{0,1,...,N—1}973, the un-
Pozidis et al. [21, eq. 25] for the selection of the best 1Pesli wrapped phases computed by applying Flynn’s method to the

=7
(%]
D
=
=
(]
o
N
o]
(o]
w
e
o
<
D
-
@,
[=]
=
[N

Now, what happens as far as the wrapped ph&ggr of fgjf
is concerned? Does it converge in probability to the wrapped
seyi,”, of ['i7.r? If it does, is it asymptotically unbiased

and consistent? The answer ensues from the following eesult

C. Toward a 2D frequency content criterion
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wrapped phase ~;2;[(.7.701) and ~;{;f(.7.7oz), respectively. V. COMPUTER SIMULATIONS
Under the assumptions of lemma 1, the estingte’*(., ., &)

~ . . . . The objective of this section is twofold: i) to demonstrate
of i7", ., ) is asymptotically unbiased and consistent. ) )

the performances of the proposed PEP algorithms, applied to
A proof is given in appendix VII-B. band-limited systems, comparing them with those of some
. efficient phase retrieval techniques, referred to as Hedm/
] Now let W (k) fmd V(k,k’)Nbe random variables de- [20] and g-Pozi/Petro [21] ¢ =3 and ¢ =4 when the output
fined by W (k) = o177 (k,8) —¢i."(k,B) and V(k, k) = pispectrum and trispectrum are used respectively) andii) t
Paru (kK a)—z/?;{;"“(k,k’, «), respectively, wherék ke  show that the PEP methods are more robust to a wrong choice
{0;. W N=18, B=(B1,...,B4-2) €{0,...,N—1}72 and of the polyspectrum slices used in the reconstruction phaee
a=(a1,...,a4-3)€{0,..., N=1}973. Next, letL?(Q2,7,P) compared to methods quoted previously. Note that, although
be the Hilbert space of second order random variabldbe Pozi/Petro approach [21] allows for complete system
SinceW (k) andV (k, k') are elements of.?(Q2,7,P), using reconstruction, we only evaluate its ability in recoverithg
corollary 1, theorem 2 and Schwarz's inequality we get thgystem phase. Moreover, we decided to show the performances
following proposition. of the PER, methods, that is, the PEP algorithms which
use a 2D unwrapping scheme, since simulations proved their

o ;;OISOVS[/IUZ’” 1iE VUI? dljrvﬂ;:, ;}ssum dpltéo‘r/lsk (])cf, V';“;Ta ]Superiority over the other PEP approaches. Recall thatFyn
(WE)W (K], E[V (k, K)V (K", k)] andE[V (k, k)W (k")] minimum discontinuity method [8] was used, as far as the 2D

ggzvsgge?ai%rzero’ whet denotes the mathematical eXpeCtaﬁnwrapping processing is concerned. D.C. Ghiglia et al. [8,

pp.151-177] show that this finds a solution that minimizes

the discontinuities. The algorithm achieves this goal bngis

B. About thet-PERp and {,6)-PERp methods a tree-growing approach that traces paths of discontesuiti
According to equation (12) and using the notations of tH&e phase, detects the paths that form loops, and adds fasiltip

previous subsection, for eveky belonging to{0, ..., N—1}, of 27 to the phase values enclosed by the loops to minimize the

we get: discontinuities. This process is performed iterativelyilumo
N_1 more loops are detected. The process is guaranteed to genver
N(on(kr) — dn(k1)) = Z V(ky, ko) (17) to a "minimum dlscontmuny. solution. .
ha=0 So, four computer experiments are presented in the fol-

. .. lgwing subsections in order to compare the REPethods
Thus we dedgce from (17?' theorem 2 anFj the Ilne%rlty (é\iith the Petro/Pozi3-Pozi/Petro and-Pozi/Petro algorithms.
the mathematical expectation that the estimated phase, | each experiment, two stationary processes were gederate

obtained by thel-PERp method is asymptotically unbiased.sing two non-minimum phase bandlimited systems defined
The same result is also true for the §)-PERBp algorithm. In by:

fact, the following equation can be easily derived from isest

lI-B and IV-A: Ym e {=9,---,6}, hi(m) = 0.77%! cos(0.497mm)
N(dnlks) — dnlks)) = S —o (V(k1, ks) — W (k1)) 8) +0.8(0.65)! % | sin(0.387 + g)

The asymptotically unbiasednessgqﬁs then directly deduced and;

from (18), corollary 1, theorem 2 and the linearity of the

mathematical expectation. Hy(z) =1-1.252"" +1.7527% = 5.2527° — 12.527*
Now the variances off, associated to thd-PERp and +1827° 49275 -2.86x 1076277 4+ 5.25278

(4,6)-PERp methods are given by: +0.7527° + 1.752710

N2E[(n(k1) — (k1))
[(nlkr) = dnlko))] where h; and Hs represent the impulse response of a band-

Z

N-1
E[V (ky, k2)V (k1, k)] (19) Pass filter and the transfert function of a proakis-a channel
ka—0 kj=0 respectively. It should be noted that the discrete-timekis
a channel is typical of the response of a good quality telepho
and channel [22]. Next an additive zero-mean white gaussiasenoi
N2 E[((;h(l%) — on(ks))?] = was added to the outputs. The noisy sequence is then divided
No1N-1 to records of 256 samples, and an indirect method is used
Z Z (E[V (ky1, ks)V (K}, ks)| —E[V (ky, ks)W (k)] + to estimate the polyspectra, with a DFT size6df samples.
k1= O0k! =0 As a performance index of the phase estimation methods, we

used the Normalized Mean-Squared Error (NMSE) criterion

[5, eq. 53] between the true channel impulse response and its
respectively. Then, using proposition 1 it appears that po¢- estimated impulse response. Note that the estimated impuls

vious equations converge to zero, which shows the consigtemesponse was computed in time-domain using the true filter
of the 4-PEBp and {, 6)-PEBp algorithms. magnitude combined with the recovered phase.

E[W (k)W (k)] — E[W (k1) V (K1, k5)]) (20)
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A. Data length effects og Perolpozi 14 B
. : . , , = i (3.4)-PER
In this experiment, we set the Signal to Noise Ratio (SNR) w ° (3.4)-PER, =% ®
to 15 dB and varied the data length. Two different studieswer 2 * w 3-PER
then conducted. The first one relates to non-symmetric input Zi WAL 2 :Z *
sources (we used a zero-mean exponentially distributet i.i B R R N T T BT Massstsssusassusasss
. . . SNR (dB) SNRaB)
sequence) and the second one deals with symmetrically dis-
tributed sources (a Binary Phase Shift Keying (BPSK) source (@ (b)
in baseband with a square transmit filter and a symbol rate - +PoriPeto
equal to the sample rate was then used). Consequently, since _ °¢ . 4-PozilPetrp
the i.i.d. exponential sequence has a non-zero skewness, th fij ?0»8
first study allows to compare the performance of 3HRERp, £ . AoPER 2
(3,4)-PEBp, Petro/Pozi and th&-Pozi/Petro algorithms. On “ = /H)EPZD
the other hand, since the BPSK signal is symmetrically dis- s o Tio b 1o %0 3o %0 B I I R e
tributed, the trispectrumg(=4) of the observations was used SNR (a8) SNR (d8)
in the second study in order to compare the performances of © (@
the 4-PERp and4-Pozi/Petro techniques. Fig. 2. NMSE as a function of the SNR: (a) and (b) for an exptinkn

Figures 1(a), 1(b) and figures 1(c), 1(d) display the obthingistribution and (c) and (d) a BPSK.
results corresponding to the exponentially distributed se-
guence and to the BPSK source, respectively. In both cdses, t
variations of the NMSE criterion for both impulse responses 1p or 2D slice selection effects
hy andhs as a function of the data length show clearly that the , .
PEP methods perform better than the other methods, exceplf1 this experiment, the data length and the SNR were

in figure 1(b) where the performance of the4)-PERy, for both _fixed to _2048 s_amples and 15 dB, respectively and
hs, Petro/Pozi and-Pozi/Petro methods are equivalent, ~ WO different kinds of input sequence, namely the zero-mean
exponentially distributed i.i.d. signal and the BPSK seurc

were considered again. The NMSE of the output of the
Petro/Pozi Petro/Pozi,3-Pozi/Petro,4-Pozi/Petro,4-PERp, (3,4)-PEBp
3-Pozilpetro and the ¢,6)-PEBp methods were computed as a function of
the used polyspectrum slice(a € {1, ..., N—1}) introduced

in section IlI-C. The results are presented, in figures 3fa) a
3(b) for an exponentially distributed i.i.d. sequence and i
figures 3(c) and 3(d) for the BPSK source, in parallel with the

Petro—-Pozi 0.29
0.25 3-Pozi/Petro

02 (3.4)-PER,
(3.4)-PER,

/3—PEPZD

4096
Data Length

1024 2048 4096 8192 1024 2048

Data Length

(@

(b)

4-Pozi/Petro

4-PEPR

A-Pozi/Petro

Magnitude Response (MR) of the corresponding filter. Note
that, in order to improve the readability of the results, ke
was normalized with respect to the maximum value of NMSE
obtained at the output of the different algorithms. Cledhly
(3,4)-PEBp and ¢,6)-PEBp methods seem to offer a much

0.2 2D

ol 4-PERT greater flexibility with respect to the polyspectrum slietes-

tion and they seem to be more robust when the chosen slice
corresponds to a region where the noise contribution to the
polyspectrum output dominates the input signal contrdsuti

1024 2048 8192 1024 2048 8192

4096 4096
Data Length Datd®ength

() (d)

Fig. 1. NMSE as a function of the data length: (a) and (b) foexmonential

distribution and (c) and (d) for a BPSK. VI. CONCLUSION

We propose in this paper a new family of methods, called
PEP (Phase Estimation using Polyspectrum slices) methods,
in order to solve the phase estimation problem for non-
minimum phase systems. These methods, exploit only 1D

We generated 2048 samples of data and varied the SNRRd 2D slices of higher order spectra. They can be divided
Then the performance of the six methods cited in V-A werlie two classes: theg-PEP ¢ > 3) methods, which use one
compared again. As in the previous experiment, two kingrticular 2D slice of the-th order spectrum, and the;( ¢2)-
of results were obtained: those associated with a zero-mddBP . > ¢; > 3) methods, based on the joint exploitation
exponentially distributed i.i.d. sequence, plotted infegu2(a) of one special 1D slice of the;-th order spectrum and one
and 2(b) and those dealing with a BPSK, shown in figures 2(garticular 2D slice of theg,-th order spectrum. There are
and 2(d). It appears in figures 2(a) and 2(b) that theoBEPsome important differences between our methods and those
methods lead to better results, especially for low SNR &lugroposed by Petropulu et al. [20] and by Pozidis et al. [21].
The superiority of the PEB approach is even more obviousindeed, while the Petro/Pozi [20] is a recursive method and
in figures 2(c) and 2(d), whatever the SNR value. the Pozi/Petro [21] can be considered as a block method; our

B. Signal to noise ratio effects



is the smallest phase error such thabelongs to{—1,0, 1}.
The purpose of this appendix consists then in showingdtat
converges in probability to zero.

% For evrey non-zero positive realit exists at least one non-
g MR A~/ N et Mol zero positive rreat’ such thatda| < ¢’ and|db| < ¢ implies
=1 Frequencies |6¢)| < e. Indeed, it suffices to také = v/2v/a? + b2|sin(e)|
3 ®) as shown in figure 4. So for every non-zero positive kgal
3 N exists at least one non-zero positive reasuch that:
2 KA O\
3 2 2N T P(|6a) < € and |0b] <€) < P(|6y] <€)
g_ A [ 4-Pozi/Petro
-9" % % 4-PER,

= 20 (4,6)JPEFZ’D

A
DIM L

10 20 30 40 50 60
Frequencies

(©) (d)

Fig. 3. NMSE as a function of the frequency slice, with a datagth of
2048 samples and SNR=15 dB: (a) and (b) for an exponentiaildison and
(c) and (d) for a BPSK. i

)
Frequencies

== -Jf|sin(s)|y'a2 +&7

|sin(£)|\la‘? +&*

methods estimate each phase value independently from the
others. Contrary to Petro/Pozi and Pozi/Petro which aredas
on two 1D slices of the g-th order spectrum, the g-PEP ap-
proaches exploit one 2D slice g-th order spectrum. ReggrdiRig. 4. A geometric proof in order to relate the real numbeto e

the (1, ¢2)-PEP methods, its originality is the simultaneous

exploitation of one 1D slice of;-th order spectrum and one

2D slice of ¢o-th order spectrum. This joint exploitation of Now, let’s recall that convergence in mean square implies
one 1D slice and one 2D slice has never been proposedcanvergence in probability according to Tchebycheff irsqu
literature. An important result of this joint exploitatiaf two ity [18]. Consequently, sincé;{—xr is asymptotically unbiased
distinct g-th order spectra is the flexibility of the; (¢2)-PEP and consistent according to lemma 1, béthanddb converge
methods regarding the frequency slice selection comparedirt probability to zero.

the classical methods. It is also shown in this paper that theTherefore, for every non-zero positive redl the left term
PEP methods are easy to implement and they are appropriatefinhe inequality above converges to one whih goes to
any kind of system, whether real or complex. In addition, thefinity. Hence the convergence @*(|6v)| < ¢) to one using
recovered phases are shown to be asymptotically consisteé same inequality.

The good behavior of the PERis confirmed through several

computer simulations. Indeed, for band-limited systerhs, t

PEBp methods provide superior performance, as compargd proof of theorem 2

with the classical algorithms, for both symmetrically arahn
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symmetrically distributed sources. Let I and I be the phase jump functions computed by
Flynn's method from the wrapped phase$.’(.,.,a) and
VIl. A PPENDIX ~g;T(., ., ), respectively, such that, for evel¥, k2, &) of
A. Proof of theorem 1 {0,1,...,N —1}%

For the sake of readability and clarity, we omitted tlye1” - ~
tuple (k1,...,kqs—1) in the sequel, that is to say, the point
(k1,...,kq—1) where the functionf is evaluated is omitted g
and valuef(ki,...,kq—1) is simply denoted byf. Indeed, and:
the following proof is valid for any point(ks,..., k,—1) € 2w 2o .
{0,1,...,N—1}7"1. Then, leta, b, &, b, 5a and 5b be the no (k1 k2, ) = Y (ke ko, @) + 201 (ke Ko, @) (22)
real part of'{ 7", the imaginary part of'{ ", the real part of
47", the imaginary part of'¢,", the differencea — & and
the differenceb — b, respectively. Let's recall that/ denotes . o >
the number of sampleéO used t)é) estimBfe,”. fa (B ko, @) = 95 (R, ko, @) 4 09 (R, by, @) (23)

Now, let’s consider the wrapped phaéé;;". Since it may 2k, ks, @)

be closze totm and since its estirqatﬁg;’“ iNS also a Wrapp~ed We know that Flynn’s method finds the phase jump function
phaseg)”," can be decomposed &¢ "+ +27n wheredy  of (21) by minimizing, with respect té, the following global

Dk, ke, o) = 1 (K, ke, o) + 271 (1, ke, ) (21)

with, according to the notations of appendix VII-A:




criterion; asymptotically:
A(/ﬂl, kg, a) = ('f](kl, kQ, a) + j(kl, kQ, a)

- T(I) = . —n(k1 + 1, ko, ) — I(ky + 1, ko, )+

|jz Z |I t rz klak% ) (kl + 1, k2; ))| (24) R Int(w(kl,kQ,az —’(/J(kl +1,]€2,Q)/27‘(’)

g e 2m B(ky, ko, 0) = (n(ky, ko, 00) + I(ky, ko, o)

= =T T g—ry —n(k1 ke +1,0) — I(ky, ko + 1, )+

S 0k, ey, @) — 935k ks 4 1o UG :
e R R L), k() (Fy, b, ) — (s, b + 1, @),27)

% k1,k2 2m (30)

S Then, by identifying (26) and (30), we find, for every
9 whereInt(.) denotes the function that rounds to the neare§ti, k2, «), that:

j. Icr:'fteegneornlnsertlng (21) into (24)’ we get the fO”OWIng Wbb I(kh k27 a) = I(kh k27 a) - 77(]4317 k27 a) (31)

§ So, inserting (23) and (31) into (22), we have:

§ = |A(k1ak2aa)| + |B(k17k27a)| (25) S ru 7

|8 k§2 k§2 g,a; ’ (klak27a) - q (klkaa ) + 6’(/)(k17k27a) (32)

§ . According to theorem 1, this last equation clearly shows tha
E with: ~g;““( «) is asymptotically unbiased and consistent when
©p Flynn’ hod i .

é (klak% ) = ( (k17k2,a))i1—(k1+17k2’a)) ynns method is used

z' In ( (/ﬁ,kg,a)—Z/J(k1+1,k2,a)/2’ﬂ'> 26
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