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Abstract— This paper describes and compares two classical 
methods for the detection of neuron groups which exhibit 
synchronized firings in multivariate spike trains. These 
methods were compared on experimental and randomized data 
corresponding to the firing activity of 104 neurons located in 
motor, premotor, and parietal cortices in a monkey during 
movement tasks. Both methods exhibited high false positive 
rates in randomized data, but results showed that this rate can 
be advantageously reduced with a simple postprocessing. 
Otherwise, one method permitted to detect a significant 
number of synchronized groups of neurons related to the 
behavioral task. 

I. INTRODUCTION 
rogress in the design of neural multielectrode recording 
techniques [1] has increased the need for analysis 

methods of multivariate neural spike trains of large 
dimension. The challenges of analyzing data of this type 
have been reviewed in [2]. In this paper, we compare two 
methods that are able to extract groups of neurons with 
synchronized firings. The first one was proposed in 1978 by 
Gerstein and colleagues [3] and the second was submitted by 
Grün and collaborators in 1994 [4].The classical way to deal 
with this problem is to extract groups for which the firing 
joint probability is higher than the expected firing joint 
probability when the neurons fire independently but with 
equal spike rates. In practice, the firing joint/marginal 
probabilities are estimated using a coincidence window and 
non-independence condition is dealt with using a statistical 
test.  

Here we present these two methods in a common 
mathematical framework and to compare detection 
performances in experimental and randomized data in a 
Brain-Machine Interface behavioral  
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II. METHODS PRESENTATION 

A. Multivariate spike train 
A multivariate spike train of duration T  may be 

represented by a multivariate signal ( )S t , [ ]0,t T∈ : 
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where in  and { },1 ,,...,
ii i nτ τ  for 1,...,i N=  denote 

respectively the count and the time occurrences of neuronal 
firings in the ith neuron on the N observed neurons. 

One classical way to randomize a multivariate spike train 
is to perform a random permutation of the interspike 
intervals in each spike train. This procedure is called data 
shuffling [5]. On the one hand, it guarantees that the ith 
randomized and original spike trains have identical duration, 
spike counts, and interspike interval histograms. On the 
other hand, synchronized firings are broken in the 
randomized multivariate spike train. 

B. Processing of a multivariate spike train 
The two analysis methods are not directly applied to 

multivariate spike trains but on a binary matrix derived from 
these spike trains. The time axis [ ]0,T  is segmented into M  
adjacent coincidence time windows of duration D  
( /M T D= ). Spikes from the same train that occurred into 
the same time window are grouped and transformed into a 
binary value equal to 1 if one or more spike(s) occurred 
during D and 0 otherwise. This transformation known as 
binning operation yields to a binary matrix B  with N  rows 
and M  columns. 

For statistical analysis of coincidences, we considered that 
the column vectors of matrix B  correspond to M  
independent realizations of a binary random vector 

[ ]1,..., , {0,1}t
N iX x x x= ∈  (the t exponent denotes the 

transpose operator). Then, the problem of extracting a group 
of co-activated neurons labeled by indices 

1{ ,..., } {1,..., }nw w N⊂ , is equivalent to the problem of 
finding a group of coordinates in X conjointly equal to 1 (i.e. 

1
{ 1,..., 1}

nw wx x= = ) with an occurrence in B  significantly 
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higher than the expected occurrence when neurons fired in a 
independent way but with equal rates.  

Two methodological approaches were proposed to solve 
the aforementioned problem. The first approach consists in 
searching groups of coordinates in X conjointly equal to 1 
independently of the values of the other coordinates (i.e. 
non-exclusive activation of the considered group). The 
second approach is aimed at extracting groups of coordinates 
in X conjointly equal to 1 with all other coordinate values 
being equal to zero (i.e. exclusive activation of the 
considered group). In the following of the paper, the non-
exclusive (resp. exclusive) occurrence of a neuron group 

1{ ,..., }nw w  will be referred as 1({ ,..., })NE
nn w w  (resp. 

1({ ,..., })E
nn w w ). 

Gerstein and colleagues proposed an implementation of 

the first approach (see [3] for details) in order to detect and 
identify “functional groups of neurons” in multivariate spike 
train. The iterative algorithm rejects independent groups of 
neurons using a 2χ  test (see Table I for details). 

An implementation of the second approach, called Unitary 
Event analysis, was proposed in 1994 [4] (see [6] for 
implementation details) in order to detect episodes of 
synchronized neural activity in multivariate spike trains. 
This algorithm compares the observed occurrence 

1({ ,..., })E
nn w w  and the expected occurrence 

exp 1({ ,..., })E
nn w w  when the neurons fire independently but 

with the same rates. The deviation is evaluated with the 

joint-surprise function 1( ) logS − ΨΨ =
Ψ

 with 

1 exp 1( ({ ,..., } | ({ ,..., })E E
n nn w w n w wΨ =  
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With this transformation: 
( ) 0S Ψ >  if 1 exp 1({ ,..., }) ({ ,..., })E E

n nn w w n w w> , 

( ) 0S Ψ ≈  if 1 exp 1({ ,..., }) ({ ,..., })E E
n nn w w n w w≈ , and 

( ) 0S Ψ <  if 1 exp 1({ ,..., }) ({ ,..., })E E
n nn w w n w w< . 

Then, a group of co-activated neurons 1{ ,..., }nw w  is 
detected if ( )S SβΨ ≥  where Sβ  depends of the given 

confident probability β  (for example 2Sβ =  for 
99%β = ). 

These two methods will be referred respectively as 
Functional Groups Detection Method (FGDM) and Unitary 
Event Detection Method (UEDM) in the following of the 
paper. Methods are both controlled by two identical 

parameters: the coincidence window size D  and the 
confident probability β . 

III. DATA 

A. Synthetic data 
The Fig. 1-A shows a synthetic multivariate spike train 

introduced to benchmark the methods presented here. The 
simulated data exhibits synchronized (see black dots) and 
independent firings (see crosses) between five artificial 
neurons during an epoch of 2.1 s. 

B. In Vivo Data 
Simultaneously recorded spike trains (N=104 neurons 

from the motor, premotor, and parietal cortices) were 

TABLE I 
TWO-WAY CONTINGENCY TABLE 

 
Activation of 
neuron group 

1{ ,..., }nw w  

Not activation of 
neuron group 

1{ ,..., }nw w  
 

Activation of 
neuron { }j  

a  b  a b+
 

Not-activation 
of neuron { }j  

c  d  c d+
 

 a c+  b d+  M  
With 

1{ } {1,..., } { ,..., }nj N w w∈ − , 1({ ,..., , })NE
na n w w j= , ({ })NEb n j a= − , 

1({ ,..., })NE
nc n w w a= − , and d M a b c= − − − . 

The M columns of matrix B  can be partitioned in the above two-way 
contingency table. If the activation of the neuron group 1{ ,..., }nw w  is 
independent of the activation of the neuron { }j , the indicator  

2( )
( )( )( )( )

M ad cbI
a b a c c d b d

×=
+ + + +

 may be assumed to have a 2χ  

distribution with one DF for 40M > . In this way, a co-activated group of 
neurons 1{ ,..., }nw w  is detected if I Iβ≥  where Iβ  depends of the given 

confident probability β  (for example 6.635Iβ =  for 99%β = ). 

 
Fig. 1. Binning of a synthetic multivariate spike train. A-. Synchronized 
firings were introduced between neuron couples {1,2} and {4,5} with 
dithered regular spike trains of 10 spikes/s. The dither was such that the 
maximum interval-interspike duration between two synchronized 
firings can not exceed 6 ms whatever the synchronized group. The 
synchronized times between neurons 1-2 and 4-5 were in phase 
opposition in order to avoid overlapping. Additional independent firings 
were simulated using a Poisson process of 5 spikes/s in each spike train. 
B- A binning transformation was applied to the multivariate spike train 
for D =10 ms. This transformation yielded to a binary matrix B  with 5 
rows and 210 columns. 
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collected in an owl monkey during a brain-machine interface 
experiment at Duke University, as described in [7]. 
Behaviorally, the monkey performed a motor task in which 
it was cued to reach food from a stationary position. The 
movement was repeated 72 times. The position of the hand 
was recorded in time synchronized with the neuronal data. 
The duration of each task was random but the movement 
sequence was the same: 1) the monkey’s hand was at rest, 2) 
it reached for food, 3), food was carried to the mouth, and 
finally 4) the hand returned to the rest position. We manually 
segmented the neuronal recordings using the 3-D hand 
trajectories into only two behavioral states: hand at rest (i.e. 
preparation of movement) and hand moving (i.e. execution 
of movement). Time segments corresponding to repeated 
movement execution were concatenated and used for data 
analysis. The cumulative duration of execution of movement 
was equal to 60.303 s. In this way, we obtained a 
multivariate spike train composed of 104 single spike trains 
of duration 60.303 s. 

C. Randomized In Vivo Data 
Randomized experimental data were generated using the 

randomization procedure described in section II-A. Shuffled 
simulated data were composed of 104 independent spike 
trains with a duration of 60.303 s. In order to estimate the 
distribution of the number of extracted groups as a function 
of parameter D, a series of simulated data sets was generated 
by the repetition of this randomization procedure (100 
times). 

IV. RESULTS 
The Table II shows the list of detected groups for D =10 

ms and 99%β =  in the synthetic multivariate presented in 
section III-A. The FGDM detected three groups (2 true 
positives + 1 false positive) whereas the UEDM extracted 
five groups (two true positives + 3 false positives). One way 
to select only the true positives among detected groups, is to 
select groups whose the occurrence is higher than a 
minimum occurrence min {1, 2,...}n ∈ . For example, and for 
D =10 ms, 99%β = , and minn =4, the two methods extract 
only the two true positives. 

The two methods were applied on experimental data and 

TABLE II 
GROUPS DETECTION IN A SYNTHETIC MULTIVARIATE SPIKE TRAIN 

 FGDM UEDM 

Neuron 
groups 

NEn
 

I  
( 99% 6.635I = ) 

En  
 

exp
En  

 
( )S Ψ  

( 99% 2S = ) 

{1,2}  a,b 15 38.514 (*) 12 2 5.865 (*) 
{1,3}  3 3.922 0 - - 
{1,4}  3 0.427 2 2 0.165 
{1,5}  3 0.260 3 2 0.321 
{2,3}  3 3.660 0 - - 
{2, 4}  4 0.026 0 - - 
{2,5}  4 0 1 2 0.805 
{3, 4}  1 0.022 0 - - 
{3,5}  0 - 0 - - 

{4,5}  a,b 13 27.260 (*) 10 2 4.332 (*) 
{1,2,3}  a,b 3 11.556 (*) 2 0 +∞ (*) 
{1, 2,4}  1 0.766 0 - - 
{1, 2,5}  0 - 0 - - 
{1, 4,5}  0 - 0 - - 

{2, 4,5}  b 3 0.875 3 0 +∞  (*) 
{1,2,3, 4}  b 1 0.902 1 0 +∞  (*) 
{1,2,3,5}  0 - 0 - - 

Iterative progress of FGDM: At the first iteration, the non-exclusive 
occurrences of the ten pairs of neurons are estimated in the [5 210]×  
matrix B  defined in Fig. 1. The pairs {1,2}  and {4,5}  which exhibited 
indicators I  higher to the threshold 99%I  were kept. At the second 
iteration, the algorithm built 6 triplets and selected the triplet {1,2,3} . At 
the third iteration, two quadruplets were built but neither was selected 
consequently the algorithm stopped its progress. 
Progress of UEDM: The algorithm determined the set of distinct columns 
in B  with a least 2 active coordinates and occurring at least one time. 
Algorithm found a set of 8 columns occurrences varying from 1 to 12. 
Corresponding expected occurrences and joint-surprise values were then 
computed. Five groups exhibited joint-surprise values higher than the 
threshold 99%S . Note that for a given group: NE En n≥ . agroup detected 
using FGDM, bgroup detected using UEDM, (*) detected group. 

 
Fig. 2.  Number of detected groups in experimental and randomized 
data. Detection results with FGDM and UEDM are respectively 
showed in left and right part and each row corresponds to a particular 

minn  value. For each method and for each D value, the detection was 
processed 1 time on experimental data and 1 time on each one of the 
100 randomized data. The number of detected groups is then showed 
as diamond for experimental data and the distribution of detected 
groups in randomized data is show with an error bar (lower and upper 
borders correspond respectively to the min. and max. observed values 
and the dot corresponds to the median value). 
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randomized experimental data for fifteen values of the 
coincidence window D=1,2,…,15 ms, five values of the 
minimum occurrence minn =1,5,10,15,20, and for a same 
confident probability β =99%. For each method, each D 
value, and each minn  value, we superimposed the number of 
detected groups in experimental data (see diamond in Fig. 2) 
and the distribution of the number of extracted groups in the 
randomized experimental data (see error bars in Fig. 2). 

Left and right plots of Fig. 2-A obtained for min 1n =  show 
the three following results. First, the number of extracted 
groups in randomized experimental data (i.e. false positive) 
is high whatever the method. For example, the number of 
false positives for D =15 ms in limited to 600 with FGDM 
and limited to 3000 for UEDM. Second, the number of 
detected groups increased when the D  value increased 
especially for UEDM. Third, for D > 4 ms, the number of 
detected groups in experimental data is clearly higher than 
the number of groups detected in randomized experimental 
data with the functional group detection method whereas 
these numbers are similar with unitary event detection 
method. 

When minn  increased, results presented in Fig. 2 B-E 
confirmed the preceding third point. Indeed, in the one hand, 
with functional group detection method and for D > 4 ms, 
the number of detected groups in experimental data was 
significantly higher that the numbers of extracted groups in 
randomized experimental data. On the other hand, with 
unitary event detection method, the number of extracted 
groups in experimental and in randomized data was similar. 
In addition, the number of detected groups decreased 
strongly both in experimental and randomized experimental 
data when minn  increased. For minn =5 in the case of EUDM 
and minn =10 in the case of FGDM, the mean number of false 
positives detection in randomized data was lower than 10.  

V. DISCUSSION 
In this paper, we presented two standard methods ([3] and 

[4]) able to detect groups of neurons with synchronized 
firings in multivariate spike trains. For the first time, these 
methods were described in a same formal language. We 
consider that this description is interesting for the 
community because it gives a framework for a rapid 
implementation of the two approaches (especially for 
Gerstein’s approach which was forgotten by the 
community). In addition, this presentation showed that these 
methods use the same parameters: a coincidence window 
value and a confident probability. This property permitted us 
to objectively compare these methods on experimental and 
randomized experimental data.  

The detection results in synthetic and randomized 
experimental data show that the two methods detect a large 
number of false positives characterized by low occurrence. 
This observation confirms previous studies [8] which 
showed that this class of methods detects groups highly 

significant in a statistical view point but which appear only 
one or two time in the B matrix. In this paper, we show at 
the application of a minimum occurrence threshold on 
detected neurons groups decreased advantageously the false 
positive rate. 

The comparison between the numbers of detected neurons 
groups in experimental and in randomized experimental data 
with the functional group detection method exhibited a 
significant excess of detected groups in experimental data 
whereas this result was not confirmed with unitary event 
detection method. This result revealed the two following 
findings. First, the functional group detection method, which 
works with non-exclusive activations, seems more sensitive 
in large multivariate spike train that unitary event detection 
method which works with exclusive activations. Second, the 
excess of co-activated groups observed in experimental data 
with functional group detection method has to be correlated 
with the behavior of the owl monkey. This interesting 
finding indicates that the hand movement of the owl monkey 
generates firing synchronizations between neurons 
distributed among motor, premotor, and parietal cortices. 
This second point has to be investigated in details in future 
works. 
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