S. Allan and N. Rothwell, Cytokines and acute neurodegeneration, Nature Reviews Neuroscience, vol.5, issue.10, pp.734-778, 2001.
DOI : 10.1038/35094583

B. Aggarwal, Signalling pathways of the TNF superfamily: a double-edged sword, Nature Reviews Immunology, vol.3, issue.9, pp.745-756, 2003.
DOI : 10.1038/nri1184

M. Feldmann and R. Maini, TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases, Nature Medicine, vol.9, issue.10, pp.1245-50, 2003.
DOI : 10.1038/nm939

L. Joosten, IL-32, a proinflammatory cytokine in rheumatoid arthritis, Proceedings of the National Academy of Sciences, vol.46, issue.5, pp.3298-303, 2006.
DOI : 10.1002/art.10233

Z. Mallat, Elevated Levels of 8-iso-Prostaglandin F2?? in Pericardial Fluid of Patients With Heart Failure : A Potential Role for In Vivo Oxidant Stress in Ventricular Dilatation and Progression to Heart Failure, Circulation, vol.97, issue.16, pp.1536-1545, 1998.
DOI : 10.1161/01.CIR.97.16.1536

F. Giordano, Oxygen, oxidative stress, hypoxia, and heart failure, Journal of Clinical Investigation, vol.115, issue.3, pp.500-508, 2005.
DOI : 10.1172/JCI200524408

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1052012

D. Mann, Inflammatory Mediators and the Failing Heart: Past, Present, and the Foreseeable Future, Circulation Research, vol.91, issue.11, pp.988-998, 2002.
DOI : 10.1161/01.RES.0000043825.01705.1B

J. Springer, S. Von-haehling, and S. Anker, The need for a standardized definition for cachexia in chronic illness, Nature Clinical Practice Endocrinology & Metabolism, vol.361, issue.8, pp.416-423, 2006.
DOI : 10.1038/ncpendmet0247

K. Kaur, A. Sharma, S. Dhingra, and P. Singal, Interplay of TNF-?? and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes, Journal of Molecular and Cellular Cardiology, vol.41, issue.6, pp.1023-1053, 2006.
DOI : 10.1016/j.yjmcc.2006.08.005

M. Fratelli, Gene expression profiling reveals a signaling role of glutathione in redox regulation, Proceedings of the National Academy of Sciences, vol.107, issue.1, pp.13998-4003, 2005.
DOI : 10.1172/JCI11837

M. Cailleret, N-Acetylcysteine Prevents the Deleterious Effect of Tumor Necrosis Factor-?? on Calcium Transients and Contraction in Adult Rat Cardiomyocytes, Circulation, vol.109, issue.3, pp.406-417, 2004.
DOI : 10.1161/01.CIR.0000109499.00587.FF

M. Bourraindeloup, N-Acetylcysteine Treatment Normalizes Serum Tumor Necrosis Factor-?? Level and Hinders the Progression of Cardiac Injury in Hypertensive Rats, Circulation, vol.110, issue.14, pp.2003-2012, 2004.
DOI : 10.1161/01.CIR.0000143630.14515.7C

L. Herzenberg, Glutathione deficiency is associated with impaired survival in HIV disease, Proceedings of the National Academy of Sciences, vol.14, issue.3, pp.1967-1972, 1997.
DOI : 10.1073/pnas.90.16.7632

W. Droge and E. Holm, Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction, Faseb J, vol.11, pp.1077-89, 1997.

J. Andersen, Oxidative stress in neurodegeneration: cause or consequence?, Nature Reviews Neuroscience, vol.5, issue.7, pp.18-25, 2004.
DOI : 10.1038/nrn1434

F. Moodie, Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells, Faseb J, vol.18, pp.1897-1906, 2004.

R. Tirouvanziam, High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis, Proceedings of the National Academy of Sciences, vol.243, issue.1-2, pp.4628-4661, 2006.
DOI : 10.1016/S0022-1759(00)00229-5

M. Demedts, High-Dose Acetylcysteine in Idiopathic Pulmonary Fibrosis, New England Journal of Medicine, vol.353, issue.21, pp.2229-2242, 2005.
DOI : 10.1056/NEJMoa042976

K. Hauer, Improvement in muscular performance and decrease in tumor necrosis factor level in old age after antioxidant treatment, Journal of Molecular Medicine, vol.180, issue.2, pp.118-125, 2003.
DOI : 10.1016/S0304-3835(02)00006-X

M. Hill and P. Singal, Right and Left Myocardial Antioxidant Responses During Heart Failure Subsequent to Myocardial Infarction, Circulation, vol.96, issue.7, pp.2414-2434, 1997.
DOI : 10.1161/01.CIR.96.7.2414

G. Rozanski and Z. Xu, channel remodeling in postinfarction rat heart, American Journal of Physiology - Heart and Circulatory Physiology, vol.282, issue.6
DOI : 10.1152/ajpheart.00894.2001

M. Nian, P. Lee, N. Khaper, and P. Liu, Inflammatory Cytokines and Postmyocardial Infarction Remodeling, Circulation Research, vol.94, issue.12, pp.1543-53, 2004.
DOI : 10.1161/01.RES.0000130526.20854.fa

V. Haehling, S. Jankowska, E. Anker, and S. , Tumour necrosis factor-? and the failing heart, Basic Research in Cardiology, vol.99, issue.1, pp.18-28, 2004.
DOI : 10.1007/s00395-003-0433-8

D. Macewan, TNF receptor subtype signalling: Differences and cellular consequences, Cellular Signalling, vol.14, issue.6, pp.477-492, 2002.
DOI : 10.1016/S0898-6568(01)00262-5

B. Liu and Y. Hannun, Inhibition of the Neutral Magnesium-dependent Sphingomyelinase by Glutathione, Journal of Biological Chemistry, vol.272, issue.26, pp.16281-16288, 1997.
DOI : 10.1074/jbc.272.26.16281

S. Adam-klages, FAN, a Novel WD-Repeat Protein, Couples the p55 TNF-Receptor to Neutral Sphingomyelinase, Cell, vol.86, issue.6, pp.937-984, 1996.
DOI : 10.1016/S0092-8674(00)80169-5

B. Segui, Involvement of FAN in TNF-induced apoptosis, Journal of Clinical Investigation, vol.108, issue.1, pp.143-51, 2001.
DOI : 10.1172/JCI11498

S. Malagarie-cazenave, Role of FAN in Tumor Necrosis Factor-?? and Lipopolysaccharide-induced Interleukin-6 Secretion and Lethality in D-Galactosamine-sensitized Mice, Journal of Biological Chemistry, vol.279, issue.18, pp.18648-55, 2004.
DOI : 10.1074/jbc.M314294200

K. Krown, Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death., Journal of Clinical Investigation, vol.98, issue.12, pp.2854-65, 1996.
DOI : 10.1172/JCI119114

H. Oral, G. Dorn, and D. Mann, Sphingosine Mediates the Immediate Negative Inotropic Effects of Tumor Necrosis Factor-?? in the Adult Mammalian Cardiac Myocyte, Journal of Biological Chemistry, vol.272, issue.8, pp.4836-4878, 1997.
DOI : 10.1074/jbc.272.8.4836

A. Amadou, A. Nawrocki, M. Best-belpomme, C. Pavoine, and F. Pecker, Arachidonic acid mediates dual effect of TNF-alpha on Ca2+ transients and contraction of adult rat cardiomyocytes, AJP: Cell Physiology, vol.282, issue.6, pp.1339-1386, 2002.
DOI : 10.1152/ajpcell.00471.2001

M. Sawada, Ordering of ceramide formation, caspase activation

P. Mulder, Long-Term Survival and Hemodynamics After Endothelin-A Receptor Antagonism and Angiotensin-Converting Enzyme Inhibition in Rats With Chronic Heart Failure: Monotherapy Versus Combination Therapy, Circulation, vol.106, issue.9, pp.1159-64, 2002.
DOI : 10.1161/01.CIR.0000027138.07524.38

D. Sahn, A. Demaria, J. Kisslo, and A. Weyman, Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements, Circulation, vol.58, issue.6, pp.1072-83, 1978.
DOI : 10.1161/01.CIR.58.6.1072

C. Pavoine, ??2-Adrenergic Signaling in Human Heart: Shift from the Cyclic AMP to the Arachidonic Acid Pathway, Molecular Pharmacology, vol.64, issue.5, pp.1117-1142, 2003.
DOI : 10.1124/mol.64.5.1117

K. Chien, K. Knowlton, H. Zhu, and S. Chien, Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response

C. Milano, Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy., Proceedings of the National Academy of Sciences, vol.91, issue.21, pp.10109-10122, 1994.
DOI : 10.1073/pnas.91.21.10109

B. Mcconnell, Comparison of Two Murine Models of Familial Hypertrophic Cardiomyopathy, Circulation Research, vol.88, issue.4, pp.383-392, 2001.
DOI : 10.1161/01.RES.88.4.383

C. Perrino, Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction, Journal of Clinical Investigation, vol.116, issue.6, pp.1547-60, 2006.
DOI : 10.1172/JCI25397DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464895

B. Liu, Glutathione Regulation of Neutral Sphingomyelinase in Tumor Necrosis Factor-??-induced Cell Death, Journal of Biological Chemistry, vol.273, issue.18, pp.11313-11333, 1998.
DOI : 10.1074/jbc.273.18.11313

A. Celli, F. Que, G. Gores, and N. Larusso, Glutathione depletion is associated with decreased Bcl-2 expression and increased apoptosis in cholangiocytes, Am J Physiol, vol.275, pp.749-57, 1998.

A. Marian, Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy, The Lancet, vol.355, issue.9197, pp.58-60, 2000.
DOI : 10.1016/S0140-6736(99)06187-5

I. Jialal and S. Devaraj, Antioxidants and Atherosclerosis: Don't Throw Out the Baby With the Bath Water, Circulation, vol.107, issue.7, pp.926-934, 2003.
DOI : 10.1161/01.CIR.0000048966.26216.4C

J. Parker, Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons, Nature Genetics, vol.37, issue.4, pp.349-50, 2005.
DOI : 10.1126/science.1099196

E. Passage, Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease, Nature Medicine, vol.10, issue.4, pp.396-401, 2004.
DOI : 10.1038/nm1023

O. Hernandez, D. Discher, N. Bishopric, and K. Webster, Rapid Activation of Neutral Sphingomyelinase by Hypoxia-Reoxygenation of Cardiac Myocytes, Circulation Research, vol.86, issue.2, pp.198-204, 2000.
DOI : 10.1161/01.RES.86.2.198

N. 47-]-o-'brien, Factor Associated With Neutral Sphingomyelinase Activation and Its Role in Cardiac Cell Death, Circulation Research, vol.92, issue.6, pp.589-91, 2003.
DOI : 10.1161/01.RES.0000066290.29715.67

A. Diwan, Targeted Overexpression of Noncleavable and Secreted Forms of Tumor Necrosis Factor Provokes Disparate Cardiac Phenotypes, Circulation, vol.109, issue.2, pp.262-270, 2004.
DOI : 10.1161/01.CIR.0000109642.27985.FA

R. Ramani, Inhibition of tumor necrosis factor receptor-1-mediated pathways has beneficial effects in a murine model of postischemic remodeling, AJP: Heart and Circulatory Physiology, vol.287, issue.3, pp.1369-77, 2004.
DOI : 10.1152/ajpheart.00641.2003

M. Sun, Excessive Tumor Necrosis Factor Activation After Infarction Contributes to Susceptibility of Myocardial Rupture and Left Ventricular Dysfunction, Circulation, vol.110, issue.20, pp.3221-3229, 2004.
DOI : 10.1161/01.CIR.0000147233.10318.23

Y. Higuchi, Involvement of Reactive Oxygen Species-mediated NF-kappa B

G. Condorelli, Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function, Proceedings of the National Academy of Sciences, vol.6, issue.11, pp.9977-82, 2001.
DOI : 10.1038/sj.cdd.4400596

N. Moorjani, Activation of Apoptotic Caspase Cascade During the Transition to Pressure Overload-Induced Heart Failure, Journal of the American College of Cardiology, vol.48, issue.7, pp.1451-1459, 2006.
DOI : 10.1016/j.jacc.2006.05.065

C. Communal, Functional consequences of caspase activation in cardiac myocytes, Proceedings of the National Academy of Sciences, vol.45, issue.2, pp.6252-6258, 2002.
DOI : 10.1016/S0008-6363(99)00268-0

S. Pan and B. Berk, Glutathiolation regulates tumor necrosis factor-alpha-induced caspase- [56] Levrand S, et al. Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo, Free Radic Biol Med, vol.41, pp.886-95, 2006.
DOI : 10.1161/01.res.0000256089.30318.20

S. Lewis, Differential effects of peroxynitrite on the function of arginine vasopressin V1a receptors and alpha1-adrenoceptors in vivo, Vascular Pharmacology, vol.46, issue.1, pp.24-34, 2007.
DOI : 10.1016/j.vph.2006.06.004

J. Sochman, N-acetylcysteine in acute cardiology: 10 years later, Journal of the American College of Cardiology, vol.39, issue.9, pp.1422-1430, 2002.
DOI : 10.1016/S0735-1097(02)01797-7