P. Robinson and M. Godfrey, Marfan syndrome: a primer for clinicians and scientists, 2004.
DOI : 10.1007/978-1-4419-9013-6

R. Pyeritz, The Marfan Syndrome, Annual Review of Medicine, vol.51, issue.1, pp.481-510, 2000.
DOI : 10.1146/annurev.med.51.1.481

URL : https://hal.archives-ouvertes.fr/hal-00557373

P. Robinson and M. Godfrey, The molecular genetics of Marfan syndrome and related microfibrillopathies, Journal of Medical Genetics, vol.37, issue.1, pp.9-25, 2000.
DOI : 10.1136/jmg.37.1.9

H. Zhang, S. Apfelroth, W. Hu, E. Davis, C. Sanguineti et al., Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices, The Journal of Cell Biology, vol.124, issue.5, pp.855-63, 1994.
DOI : 10.1083/jcb.124.5.855

G. Corson, N. Charbonneau, D. Keene, and L. Sakai, Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues, Genomics, vol.83, issue.3, pp.461-72, 2004.
DOI : 10.1016/j.ygeno.2003.08.023

L. Carta, L. Pereira, E. Arteaga-solis, S. Lee-arteaga, B. Lenart et al., Fibrillins 1 and 2 Perform Partially Overlapping Functions during Aortic Development, Journal of Biological Chemistry, vol.88, issue.12, pp.8016-8039, 2006.
DOI : 10.1097/00001573-200403000-00007

L. Sakai, D. Keene, R. Glanville, and H. Bachinger, Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils, J Biol Chem, vol.266, issue.22, pp.14763-70, 1991.

N. Charbonneau, B. Dzamba, R. Ono, D. Keene, G. Corson et al., Fibrillins Can Co-assemble in Fibrils, but Fibrillin Fibril Composition Displays Cell-specific Differences, Journal of Biological Chemistry, vol.112, issue.4, pp.2740-2749, 2003.
DOI : 10.1016/S0945-053X(00)00100-1

B. Gallagher, L. Sakai, and C. Little, Fibrillin delineates the primary axis of the early avian embryo, Developmental Dynamics, vol.43, issue.1, pp.70-78, 1993.
DOI : 10.1111/j.1432-0436.1990.tb00433.x

L. Pereira, K. Andrikopoulos, J. Tian, S. Lee, D. Keene et al., Targetting of the gene encoding fibrillin???1 recapitulates the vascular aspect of Marfan syndrome, Nature Genetics, vol.266, issue.2, pp.218-240, 1997.
DOI : 10.1016/0076-6879(94)45004-8

L. Pereira, S. Lee, B. Gayraud, K. Andrikopoulos, S. Shapiro et al., Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1, Proceedings of the National Academy of Sciences, vol.393, issue.6682, pp.3819-3842, 1999.
DOI : 10.1038/30522

URL : http://www.pnas.org/content/96/7/3819.full.pdf

E. Arteaga-solis, B. Gayraud, S. Lee, L. Shum, L. Sakai et al., Regulation of limb patterning by extracellular microfibrils, The Journal of Cell Biology, vol.11, issue.2, pp.275-81, 2001.
DOI : 10.1083/jcb.129.4.1165

R. Oklu and R. Hesketh, The latent transforming growth factor ?? binding protein (LTBP) family, Biochemical Journal, vol.352, issue.3, pp.601-611, 2000.
DOI : 10.1042/bj3520601

D. Rifkin, Latent Transforming Growth Factor-?? (TGF-??) Binding Proteins: Orchestrators of TGF-?? Availability, Journal of Biological Chemistry, vol.126, issue.9, pp.7409-7421, 2005.
DOI : 10.1083/jcb.200403067

V. Todorovic, V. Jurukovski, Y. Chen, L. Fontana, B. Dabovic et al., Latent TGF-?? binding proteins, The International Journal of Biochemistry & Cell Biology, vol.37, issue.1, pp.38-41, 2005.
DOI : 10.1016/j.biocel.2004.03.011

P. Handford, M. Mayhew, M. Baron, P. Winship, I. Campbell et al., Key residues involved in calcium-binding motifs in EGF-like domains, Nature, vol.351, issue.6322, pp.164-171, 1991.
DOI : 10.1038/351164a0

X. Yuan, A. Downing, V. Knott, and P. Handford, Solution structure of the transforming growth factor beta -binding protein-like module, a domain associated with matrix fibrils, The EMBO Journal, vol.16, issue.22, pp.6659-66, 1997.
DOI : 10.1093/emboj/16.22.6659

P. Gleizes, R. Beavis, R. Mazzieri, B. Shen, and D. Rifkin, Identification and Characterization of an Eight-cysteine Repeat of the Latent Transforming Growth Factor-?? Binding Protein-1 that Mediates Bonding to the Latent Transforming Growth Factor-??1, Journal of Biological Chemistry, vol.207, issue.47, pp.29891-29897, 1996.
DOI : 10.1111/j.1432-1033.1992.tb17134.x

J. Saharinen, J. Taipale, and J. Keski-oja, Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1, EMBO J, vol.15, issue.2, pp.245-53, 1996.

J. Saharinen and J. Keski-oja, Specific Sequence Motif of 8-Cys Repeats of TGF-beta Binding Proteins, LTBPs, Creates a Hydrophobic Interaction Surface for Binding of Small Latent TGF-beta, Molecular Biology of the Cell, vol.11, issue.8, pp.2691-704, 2000.
DOI : 10.1091/mbc.11.8.2691

L. Pereira, D. 'alessio, M. Ramirez, F. Lynch, J. Sykes et al., Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome, Human Molecular Genetics, vol.2, issue.10, p.1762, 1993.
DOI : 10.1093/hmg/2.10.1762

D. Reinhardt, J. Gambee, R. Ono, H. Bachinger, and L. Sakai, Initial Steps in Assembly of Microfibrils, Journal of Biological Chemistry, vol.269, issue.3, pp.2205-2215, 2000.
DOI : 10.1074/jbc.274.13.8933

R. Giltay, R. Timpl, and G. Kostka, Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, pp.3-4

A. Marson, M. Rock, S. Cain, L. Freeman, A. Morgan et al., Homotypic Fibrillin-1 Interactions in Microfibril Assembly, Journal of Biological Chemistry, vol.340, issue.6, pp.5013-5034, 2005.
DOI : 10.1042/bj3400171

C. Kielty, T. Wess, J. Haston, M. Sherratt, C. Baldock et al., Organisation and biomechanical properties of fibrillin microfibrils Marfan syndrome: a primer for clinicians and scientists, pp.130-172, 2004.

C. Kielty, M. Sherratt, and C. Shuttleworth, Elastic fibres, J Cell Sci, vol.115, pp.2817-2845, 2002.

D. Keene, B. Maddox, H. Kuo, L. Sakai, and R. Glanville, Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils., Journal of Histochemistry & Cytochemistry, vol.39, issue.4, pp.441-450, 1991.
DOI : 10.1177/39.4.2005373

C. Baldock, A. Koster, U. Ziese, M. Rock, M. Sherratt et al., The Supramolecular Organization of Fibrillin-Rich Microfibrils, The Journal of Cell Biology, vol.7, issue.5, pp.1045-56, 2001.
DOI : 10.1083/jcb.124.5.855

E. Davis, R. Roth, J. Heuser, and R. Mecham, Ultrastructural properties of ciliary zonule microfibrils, Journal of Structural Biology, vol.139, issue.2, pp.65-75, 2002.
DOI : 10.1016/S1047-8477(02)00559-2

URL : http://www.mechamlab.wustl.edu/Lab Web Page.data/Library/ManuscriptPDF/Davis_Zonule_JSB02.pdf

R. Qian and R. Glanville, Alignment of Fibrillin Molecules in Elastic Microfibrils Is Defined by Transglutaminase-Derived Cross-Links, Biochemistry, vol.36, issue.50, pp.15841-15848, 1997.
DOI : 10.1021/bi971036f

S. Cain, A. Morgan, M. Sherratt, S. Ball, C. Shuttleworth et al., Proteomic analysis of fibrillin-rich microfibrils, PROTEOMICS, vol.85, issue.1, pp.111-133, 2006.
DOI : 10.1091/mbc.11.5.1499

C. Baldock, C. Gilpin, A. Koster, U. Ziese, K. Kadler et al., Three-dimensional reconstructions of extracellular matrix polymers using automated electron tomography, Journal of Structural Biology, vol.138, issue.1-2, pp.130-136, 2002.
DOI : 10.1016/S1047-8477(02)00028-X

M. Sherratt, C. Baldock, J. Haston, D. Holmes, C. Jones et al., Fibrillin Microfibrils are Stiff Reinforcing Fibres in Compliant Tissues, Journal of Molecular Biology, vol.332, issue.1, pp.183-93, 2003.
DOI : 10.1016/S0022-2836(03)00829-5

C. Kielty, M. Sherratt, A. Marson, and C. Baldock, Fibrillin microfibrils Advances in protein chemistry, pp.405-441, 2005.

A. Downing, V. Knott, J. Werner, C. Cardy, I. Campbell et al., Solution Structure of a Pair of Calcium-Binding Epidermal Growth Factor-like Domains: Implications for the Marfan Syndrome and Other Genetic Disorders, Cell, vol.85, issue.4, pp.597-605, 1996.
DOI : 10.1016/S0092-8674(00)81259-3

S. Lee, V. Knott, J. Jovanovic, K. Harlos, J. Grimes et al., Structure of the Integrin Binding Fragment from Fibrillin-1 Gives New Insights into Microfibril Organization, Structure, vol.12, issue.4, pp.717-746, 2004.
DOI : 10.1016/j.str.2004.02.023

URL : https://hal.archives-ouvertes.fr/hal-00264690

S. Jensen, A. Corbett, V. Knott, C. Redfield, and P. Handford, -dependent Interface Formation in Fibrillin-1, Journal of Biological Chemistry, vol.1, issue.14, pp.14076-84, 2005.
DOI : 10.1016/S0968-0004(00)89080-5

C. Kielty, T. Wess, L. Haston, J. Ashworth, M. Sherratt et al., Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix, J Muscle Res Cell Motil, vol.23, pp.5-6581, 2002.
DOI : 10.1007/978-94-010-0147-2_17

M. Godfrey, S. Olson, R. Burgio, A. Martini, M. Valli et al., Unilateral microfibrillar abnormalities in a case of asymmetric Marfan syndrome, Am J Hum Genet, vol.46, issue.4, pp.661-71, 1990.

M. Godfrey, V. Menashe, R. Weleber, R. Koler, R. Bigley et al., Cosegregation of elastin-associated microfibrillar abnormalities with the Marfan phenotype in families, Am J Hum Genet, vol.46, issue.4, pp.652-60, 1990.

D. Hollister, M. Godfrey, L. Sakai, and R. Pyeritz, Immunohistologic Abnormalities of the Microfibrillar-Fiber System in the Marfan Syndrome, New England Journal of Medicine, vol.323, issue.3, pp.152-161, 1990.
DOI : 10.1056/NEJM199007193230303

D. Halliday, S. Hutchinson, S. Kettle, H. Firth, P. Wordsworth et al., Molecular analysis of eight mutations in FBN1, Human Genetics, vol.105, issue.6, pp.587-97, 1999.
DOI : 10.1007/s004399900190

D. Milewicz, R. Pyeritz, E. Crawford, and P. Byers, Marfan syndrome: defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts., Journal of Clinical Investigation, vol.89, issue.1, pp.79-86, 1992.
DOI : 10.1172/JCI115589

T. Aoyama, K. Tynan, H. Dietz, U. Francke, and H. Furthmayr, Missense mutations impair intracellular processing of fibrillin and microfibril assembly in Marfan syndrome, Human Molecular Genetics, vol.2, issue.12, pp.2135-2175, 1993.
DOI : 10.1093/hmg/2.12.2135

T. Aoyama, U. Francke, H. Dietz, and H. Furthmayr, Quantitative differences in biosynthesis and extracellular deposition of fibrillin in cultured fibroblasts distinguish five groups of Marfan syndrome patients and suggest distinct pathogenetic mechanisms., Journal of Clinical Investigation, vol.94, issue.1, pp.130-137, 1994.
DOI : 10.1172/JCI117298

T. Brenn, T. Aoyama, U. Francke, and H. Furthmayr, Dermal fibroblast culture as a model system for studies of fibrillin assembly and pathogenetic mechanisms: defects in distinct groups of individuals with Marfan's syndrome, Lab Invest, vol.75, issue.3, pp.389-402, 1996.

C. Kielty and C. Shuttleworth, Abnormal fibrillin assembly by dermal fibroblasts from two patients with Marfan syndrome, The Journal of Cell Biology, vol.124, issue.6, pp.997-1004, 1994.
DOI : 10.1083/jcb.124.6.997

URL : http://jcb.rupress.org/content/jcb/124/6/997.full.pdf

C. Kielty, J. Phillips, A. Child, F. Pope, and C. Shuttleworth, Fibrillin secretion and microfibril assembly by Marfan dermal fibroblasts, Matrix Biology, vol.14, issue.2, pp.191-200, 1994.
DOI : 10.1016/0945-053X(94)90008-6

C. Kielty, S. Davies, J. Phillips, C. Jones, C. Shuttleworth et al., Marfan syndrome: fibrillin expression and microfibrillar abnormalities in a family with predominant ocular defects., Journal of Medical Genetics, vol.32, issue.1, pp.1-6, 1995.
DOI : 10.1136/jmg.32.1.1

D. Milewicz, J. Grossfield, S. Cao, C. Kielty, W. Covitz et al., A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome., Journal of Clinical Investigation, vol.95, issue.5, pp.2373-2381, 1995.
DOI : 10.1172/JCI117930

D. Reinhardt, D. Keene, G. Corson, E. Poschl, H. Bachinger et al., Fibrillin-1: Organization in Microfibrils and Structural Properties, Journal of Molecular Biology, vol.258, issue.1
DOI : 10.1006/jmbi.1996.0237

L. Lonnqvist, D. Reinhardt, L. Sakai, and L. Peltonen, Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations, Human Molecular Genetics, vol.7, issue.13, pp.2039-2083, 1998.
DOI : 10.1093/hmg/7.13.2039

M. Raghunath, E. Putnam, T. Ritty, D. Hamstra, E. Park et al., Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix, J Cell Sci, vol.112, pp.1093-100, 1999.

T. Ritty, T. Broekelmann, C. Tisdale, D. Milewicz, and R. Mecham, Processing of the Fibrillin-1 Carboxyl-terminal Domain, Journal of Biological Chemistry, vol.108, issue.13, pp.8933-8973, 1999.
DOI : 10.1083/jcb.102.3.703

D. Wright and R. Mayne, Vitreous humor of chicken contains two fibrillar systems: An analysis of their structure, Journal of Ultrastructure and Molecular Structure Research, vol.100, issue.3, pp.224-258, 1988.
DOI : 10.1016/0889-1605(88)90039-0

R. Wallace, B. Streeten, and R. Hanna, Rotary shadowing of elastic system microfibrils in the ocular zonule, vitreous, and ligamentum nuchae, Current Eye Research, vol.264, issue.1, pp.99-109, 1991.
DOI : 10.1083/jcb.101.3.814

G. Lin, K. Tiedemann, T. Vollbrandt, H. Peters, B. Batge et al., Homo- and Heterotypic Fibrillin-1 and -2 Interactions Constitute the Basis for the Assembly of Microfibrils, Journal of Biological Chemistry, vol.264, issue.52, pp.50795-804, 2002.
DOI : 10.1016/S0248-4900(98)80018-X

T. Trask, T. Ritty, T. Broekelmann, C. Tisdale, and R. Mecham, N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly, Biochemical Journal, vol.340, issue.3, pp.693-701, 1999.
DOI : 10.1042/bj3400693

J. Ashworth, V. Kelly, R. Wilson, C. Shuttleworth, and C. Kielty, Fibrillin assembly: dimer formation mediated by amino-terminal sequences, J Cell Sci, vol.112, pp.3549-58, 1999.

C. Kielty and C. Shuttleworth, Synthesis and assembly of fibrillin by fibroblasts and smooth muscle cells, J Cell Sci, vol.106, pp.167-73, 1993.

J. Bowness and A. Tarr, epsilon(gamma-Glutamyl)lysine crosslinks are concentrated in a non-collagenous microfibrillar fraction of cartilage, Biochem Cell Biol, vol.75, issue.1, pp.89-91, 1997.

F. Thurmond, T. Koob, J. Bowness, and J. Trotter, Partial Biochemical and Immunologic Characterization of Fibrillin Microfibrils from Sea Cucumber Dermis, Connective Tissue Research, vol.10, issue.3, pp.211-233, 1997.
DOI : 10.1016/0002-9378(94)90469-3

P. 63-brown-augsburger, T. Broekelmann, L. Mecham, R. Mercer, M. Gibson et al., Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase, J Biol Chem, vol.269, issue.45, pp.28443-28452, 1994.

M. Raghunath, R. Cankay, U. Kubitscheck, J. Fauteck, R. Mayne et al., Transglutaminase activity in the eye: cross-linking in epithelia and connective tissue structures, Invest Ophthalmol Vis Sci, vol.40, issue.12, pp.2780-2787, 1999.

F. 65-thurmond and J. Trotter, Morphology and biomechanics of the microfibrillar network of sea cucumber dermis, J Exp Biol, vol.199, pp.1817-1845, 1996.

K. Tiedemann, B. Batge, P. Muller, and D. Reinhardt, Interactions of Fibrillin-1 with Heparin/Heparan Sulfate, Implications for Microfibrillar Assembly, Journal of Biological Chemistry, vol.113, issue.38, pp.36035-36077, 2001.
DOI : 10.1146/annurev.biochem.68.1.729

T. Ritty, T. Broekelmann, C. Werneck, and R. Mecham, Fibrillin-1 and ???2 contain heparin-binding sites important for matrix deposition and that support cell attachment, Biochemical Journal, vol.375, issue.2, pp.425-457, 2003.
DOI : 10.1042/bj20030649

S. Cain, C. Baldock, J. Gallagher, A. Morgan, D. Bax et al., Fibrillin-1 Interactions with Heparin, Journal of Biological Chemistry, vol.86, issue.34, pp.30526-30563, 2005.
DOI : 10.1074/jbc.M205630200

URL : http://www.jbc.org/content/280/34/30526.full.pdf

K. Tiedemann, T. Sasaki, E. Gustafsson, W. Gohring, B. Batge et al., Microfibrils at Basement Membrane Zones Interact with Perlecan via Fibrillin-1, Journal of Biological Chemistry, vol.280, issue.12, pp.11404-11416, 2005.
DOI : 10.1074/jbc.M409882200

URL : http://www.jbc.org/content/280/12/11404.full.pdf

M. Gibson, Microfibril-associated glycoprotein-1 (MAGP-1) and other nonfibrillin macromolecules which may possess a functional association with the 10 nm microfibrils Marfan syndrome: a primer for clinicians and scientists, pp.161-78, 2005.

M. Gibson, J. Hughes, J. Fanning, and E. Cleary, The major antigen of elastinassociated microfibrils is a 31-kDa glycoprotein, J Biol Chem, vol.261, issue.24, pp.11429-11465, 1986.

M. Henderson, R. Polewski, J. Fanning, and M. Gibson, Microfibril-associated glycoprotein-1 (MAGP-1) is specifically located on the beads of the beaded-filament structure for fibrillin-containing microfibrils as visualized by the rotary shadowing technique., Journal of Histochemistry & Cytochemistry, vol.44, issue.12, pp.1389-97, 1996.
DOI : 10.1177/44.12.8985131

M. Gibson, M. Finnis, J. Kumaratilake, and E. Cleary, Microfibril-associated Glycoprotein-2 (MAGP-2) Is Specifically Associated with Fibrillin-containing Microfibrils but Exhibits More Restricted Patterns of Tissue Localization and Developmental Expression Than Its Structural Relative MAGP-1, Journal of Histochemistry & Cytochemistry, vol.4, issue.8, pp.871-86, 1998.
DOI : 10.1093/hmg/4.4.589

A. Penner, M. Rock, C. Kielty, and J. Shipley, Microfibril-associated Glycoprotein-2 Interacts with Fibrillin-1 and Fibrillin-2 Suggesting a Role for MAGP-2 in Elastic Fiber Assembly, Journal of Biological Chemistry, vol.79, issue.38, pp.35044-35053, 2002.
DOI : 10.1074/jbc.M011591200

M. Rock, S. Cain, L. Freeman, A. Morgan, K. Mellody et al., Molecular Basis of Elastic Fiber Formation, Journal of Biological Chemistry, vol.70, issue.22, pp.23748-58, 2004.
DOI : 10.1016/j.jmb.2003.09.053

S. Jensen, D. Reinhardt, M. Gibson, and A. Weiss, Protein Interaction Studies of MAGP-1 with Tropoelastin and Fibrillin-1, Journal of Biological Chemistry, vol.266, issue.43, pp.39661-39667, 2001.
DOI : 10.1016/S0934-8832(11)80004-1

B. Reinboth, E. Hanssen, E. Cleary, and M. Gibson, Molecular Interactions of Biglycan and Decorin with Elastic Fiber Components, Journal of Biological Chemistry, vol.15, issue.6, pp.3950-3957, 2002.
DOI : 10.1074/jbc.M003665200

E. Tsuruga, T. Yajima, and K. Irie, Microfibril-associated glycoprotein-1 and fibrillin-2 are associated with tropoelastin deposition in vitro, The International Journal of Biochemistry & Cell Biology, vol.37, issue.1, pp.120-129, 2005.
DOI : 10.1016/j.biocel.2004.06.002

M. Finnis and M. Gibson, Microfibril-associated Glycoprotein-1 (MAGP-1) Binds to the Pepsin-resistant Domain of the ??3(VI) Chain of Type VI Collagen, Journal of Biological Chemistry, vol.318, issue.36, pp.22817-22840, 1997.
DOI : 10.1038/icb.1984.46

L. Nehring, A. Miyamoto, P. Hein, G. Weinmaster, and J. Shipley, The Extracellular Matrix Protein MAGP-2 Interacts with Jagged1 and Induces Its Shedding from the Cell Surface, Journal of Biological Chemistry, vol.159, issue.21, pp.20349-55, 2005.
DOI : 10.1016/j.mod.2004.03.034

N. Charbonneau, R. Ono, G. Corson, D. Keene, and L. Sakai, Fine tuning of growth factor signals depends on fibrillin microfibril networks, Birth Defects Research Part C: Embryo Today: Reviews, vol.129, issue.1, pp.37-50, 2004.
DOI : 10.1091/mbc.11.8.2691

K. Gregory, R. Ono, N. Charbonneau, C. Kuo, D. Keene et al., The Prodomain of BMP-7 Targets the BMP-7 Complex to the Extracellular Matrix, Journal of Biological Chemistry, vol.125, issue.30, pp.27970-80, 2005.
DOI : 10.1073/pnas.96.7.3819

G. Homandberg, F. Hui, C. Wen, C. Purple, K. Bewsey et al., Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines, Biochemical Journal, vol.321, issue.3, pp.751-758, 1997.
DOI : 10.1042/bj3210751

B. Brassart, A. Randoux, W. Hornebeck, and H. Emonard, Regulation of matrix metalloproteinase-2 (gelatinase A, MMP-2), membrane-type matrix metalloproteinase-1 (MT1-MMP) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression by elastin-derived peptides in human HT-1080 fibrosarcoma cell line, Clinical & Experimental Metastasis, vol.16, issue.6, pp.489-500, 1998.
DOI : 10.1023/A:1006550503612

B. Brassart, P. Fuchs, E. Huet, A. Alix, J. Wallach et al., Conformational Dependence of Collagenase (Matrix Metalloproteinase-1) Up-regulation by Elastin Peptides in Cultured Fibroblasts, Journal of Biological Chemistry, vol.377, issue.7, pp.5222-5229, 2001.
DOI : 10.1046/j.1523-1747.2000.00858.x

H. Kagan, C. Vaccaro, R. Bronson, S. Tang, and J. Brody, Ultrastructural immunolocalization of lysyl oxidase in vascular connective tissue, The Journal of Cell Biology, vol.103, issue.3, pp.1121-1129, 1986.
DOI : 10.1083/jcb.103.3.1121

R. Somerville, K. Jungers, and S. Apte, Discovery and Characterization of a Novel, Widely Expressed Metalloprotease, ADAMTS10, and Its Proteolytic Activation, Journal of Biological Chemistry, vol.327, issue.49, pp.51208-51225, 2004.
DOI : 10.1074/jbc.M312123200

N. Dagoneau, C. Benoist-lasselin, C. Huber, L. Faivre, A. Megarbane et al., ADAMTS10 Mutations in Autosomal Recessive Weill-Marchesani Syndrome, The American Journal of Human Genetics, vol.75, issue.5, pp.801-807, 2004.
DOI : 10.1086/425231

URL : https://doi.org/10.1086/425231

A. Clarke and A. Weiss, Microfibril-associated glycoprotein-1 binding to tropoelastin, European Journal of Biochemistry, vol.272, issue.14
DOI : 10.1177/44.12.8985131

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.2004.04246.x/pdf

E. Hanssen, F. Hew, E. Moore, and M. Gibson, MAGP-2 Has Multiple Binding Regions on Fibrillins and Has Covalent Periodic Association with Fibrillin-containing Microfibrils, Journal of Biological Chemistry, vol.112, issue.28, pp.29185-94, 2004.
DOI : 10.1074/jbc.M110583200

C. Werneck, B. Trask, T. Broekelmann, T. Trask, T. Ritty et al., Identification of a Major Microfibril-associated Glycoprotein-1-binding Domain in Fibrillin-2, Journal of Biological Chemistry, vol.340, issue.22, pp.23045-51, 2004.
DOI : 10.1021/bi971036f

B. Trask, T. Trask, T. Broekelmann, and R. Mecham, The Microfibrillar Proteins MAGP-1 and Fibrillin-1 Form a Ternary Complex with the Chondroitin Sulfate Proteoglycan Decorin, Molecular Biology of the Cell, vol.11, issue.5, pp.1499-507, 2000.
DOI : 10.1091/mbc.11.5.1499

M. Gibson, D. Leavesley, and L. Ashman, Integrin, Journal of Biological Chemistry, vol.264, issue.19, pp.13060-13065, 1999.
DOI : 10.1016/S0959-440X(05)80155-1

H. Hirose, K. Ozsvath, S. Xia, and M. Tilson, Molecular cloning of the complementary DNA for an additional member of the family of aortic aneurysm antigenic proteins, Journal of Vascular Surgery, vol.26, issue.2, pp.313-321, 1997.
DOI : 10.1016/S0741-5214(97)70194-0

S. Xia, K. Ozsvath, H. Hirose, and M. Tilson, Partial Amino Acid Sequence of a Novel 40-kDa Human Aortic Protein, with Vitronectin-like, Fibrinogen-like, and Calcium Binding Domains: Aortic Aneurysm-Associated Protein-40 (AAAP-40) [Human MAGP-3, Proposed], Biochemical and Biophysical Research Communications, vol.219, issue.1, pp.36-45, 1996.
DOI : 10.1006/bbrc.1996.0177

H. Yeh, M. Chow, W. Abrams, F. J. Foster, J. Mitchell et al., Structure of the Human Gene Encoding the Associated Microfibrillar Protein (MFAP1) and Localization to Chromosome 15q15-q21, Genomics, vol.23, issue.2, pp.443-452, 1994.
DOI : 10.1006/geno.1994.1521

S. Horrigan, C. Rich, B. Streeten, Z. Li, and J. Foster, Characterization of an associated microfibril protein through recombinant DNA techniques, J Biol Chem, vol.267, issue.14, pp.10087-95, 1992.

W. Abrams, R. Ma, U. Kucich, M. Bashir, S. Decker et al., Molecular cloning of the microfibrillar protein MFAP3 and assignment of the gene to human chromosome 5q32???q33.2, Genomics, vol.26, issue.1, pp.47-54, 1995.
DOI : 10.1016/0888-7543(95)80081-V

E. Hirano, N. Fujimoto, S. Tajima, M. Akiyama, A. Ishibashi et al., Expression of 36-kDa microfibril-associated glycoprotein (MAGP-36) in human keratinocytes and its localization in skin, Journal of Dermatological Science, vol.28, issue.1, pp.60-67, 2002.
DOI : 10.1016/S0923-1811(01)00148-7

T. Toyoshima, K. Yamashita, H. Furuichi, T. Shishibori, T. Itano et al., Ultrastructural Distribution of 36-kD Microfibril-associated Glycoprotein (MAGP-36) in Human and Bovine Tissues, Journal of Histochemistry & Cytochemistry, vol.4, issue.8, pp.1049-56, 1999.
DOI : 10.1093/hmg/4.4.589

Z. Isogai, R. Ono, S. Ushiro, D. Keene, Y. Chen et al., Latent Transforming Growth Factor ??-binding Protein 1 Interacts with Fibrillin and Is a Microfibril-associated Protein, Journal of Biological Chemistry, vol.114, issue.4, pp.2750-2757, 2003.
DOI : 10.1074/jbc.270.9.4689

M. Gibson, G. Hatzinikolas, E. Davis, E. Baker, G. Sutherland et al., Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils., Molecular and Cellular Biology, vol.15, issue.12, pp.6932-6974, 1995.
DOI : 10.1128/MCB.15.12.6932

Z. Isogai, A. Aspberg, D. Keene, R. Ono, D. Reinhardt et al., Versican Interacts with Fibrillin-1 and Links Extracellular Microfibrils to Other Connective Tissue Networks, Journal of Biological Chemistry, vol.267, issue.6, pp.4565-72, 2002.
DOI : 10.1002/(SICI)1096-8628(19960329)62:3<233::AID-AJMG7>3.0.CO;2-U

URL : http://www.jbc.org/content/277/6/4565.full.pdf

L. Schaefer, D. Mihalik, A. Babelova, M. Krzyzankova, H. Grone et al., Regulation of Fibrillin-1 by Biglycan and Decorin Is Important for Tissue Preservation in the Kidney During Pressure-Induced Injury, The American Journal of Pathology, vol.165, issue.2, pp.383-96, 2004.
DOI : 10.1016/S0002-9440(10)63305-6

D. Reinhardt, T. Sasaki, B. Dzamba, D. Keene, M. Chu et al., Fibrillin-1 and Fibulin-2 Interact and Are Colocalized in Some Tissues, Journal of Biological Chemistry, vol.7, issue.32, pp.19489-96, 1996.
DOI : 10.1083/jcb.129.4.1165

L. Freeman, A. Lomas, N. Hodson, M. Sherratt, K. Mellody et al., Fibulin-5 interacts with fibrillin-1 molecules and microfibrils, Biochemical Journal, vol.388, issue.1, pp.1-5, 2005.
DOI : 10.1042/BJ20050368

G. Bressan, D. Daga-gordini, A. Colombatti, I. Castellani, V. Marigo et al., Emilin, a component of elastic fibers preferentially located at the elastin-microfibrils interface, The Journal of Cell Biology, vol.121, issue.1, pp.201-213, 1993.
DOI : 10.1083/jcb.121.1.201

H. Dietz, C. Cutting, R. Pyeritz, C. Maslen, L. Sakai et al., Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene, Nature, vol.352, issue.6333, pp.337-346, 1991.
DOI : 10.1038/352337a0

E. Putnam, H. Zhang, F. Ramirez, and D. Milewicz, Fibrillin???2 (FBN2) mutations result in the Marfan???like disorder, congenital contractural arachnodactyly, Nature Genetics, vol.2, issue.4, pp.456-464, 1995.
DOI : 10.1038/327339a0

T. Mizuguchi, G. Collod-beroud, T. Akiyama, M. Abifadel, N. Harada et al., Heterozygous TGFBR2 mutations in Marfan syndrome, Nature Genetics, vol.55, issue.8, pp.855-60, 2004.
DOI : 10.1038/nrg775

URL : https://hal.archives-ouvertes.fr/inserm-00143367

B. Loeys, J. Chen, E. Neptune, D. Judge, M. Podowski et al., A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2, Nature Genetics, vol.167, issue.3, pp.275-81, 2005.
DOI : 10.1083/jcb.200403067

H. Pannu, V. Fadulu, J. Chang, A. Lafont, S. Hasham et al., Mutations in Transforming Growth Factor-?? Receptor Type II Cause Familial Thoracic Aortic Aneurysms and Dissections, Circulation, vol.112, issue.4, pp.513-533, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.537340

A. De-paepe, R. Devereux, H. Dietz, R. Hennekam, and R. Pyeritz, Revised diagnostic criteria for the Marfan syndrome, American Journal of Medical Genetics, vol.104, issue.4, pp.417-443, 1996.
DOI : 10.2214/ajr.97.1.118

L. Pereira, O. Levran, F. Ramirez, J. Lynch, B. Sykes et al., A Molecular Approach to the Stratification of Cardiovascular Risk in Families with Marfan's Syndrome, New England Journal of Medicine, vol.331, issue.3, pp.148-53, 1994.
DOI : 10.1056/NEJM199407213310302

K. Tynan, K. Comeau, M. Pearson, P. Wilgenbus, D. Levitt et al., Mutation screening of complete fibrillin-1 coding sequence: report of five new mutations, including two in 8-cysteine domains, Human Molecular Genetics, vol.2, issue.11, pp.1813-1834, 1993.
DOI : 10.1093/hmg/2.11.1813

K. Kainulainen, L. Karttunen, L. Puhakka, L. Sakai, and L. Peltonen, Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome, Nature Genetics, vol.26, issue.1, pp.64-73, 1994.
DOI : 10.1016/0092-8674(87)90123-1

C. Hayward, M. Porteous, and D. Brock, Mutation screening of all 65 exons of the fibrillin-1 gene in 60 patients with Marfan syndrome: Report of 12 novel mutations, Human Mutation, vol.4, issue.4, pp.280-289, 1997.
DOI : 10.1002/(SICI)1098-1004(1997)10:4<280::AID-HUMU3>3.0.CO;2-L

G. Nijbroek, S. Sood, I. Mcintosh, C. Francomano, E. Bull et al., Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons

S. Katzke, P. Booms, F. Tiecke, M. Palz, A. Pletschacher et al., coding sequence in 126 individuals with marfan syndrome and related fibrillinopathies, Human Mutation, vol.16, issue.3, pp.197-208, 2002.
DOI : 10.1161/01.CIR.103.20.2469

G. Pepe, B. Giusti, L. Evangelisti, M. Porciani, T. Brunelli et al., Fibrillin-1 (FBN1) gene frameshift mutations in Marfan patients: genotype-phenotype correlation, Clinical Genetics, vol.1, issue.9182, pp.444-50, 2001.
DOI : 10.1002/humu.1380010504

J. Korkko, I. Kaitila, L. Lonnqvist, L. Peltonen, and L. Ala-kokko, Sensitivity of conformation sensitive gel electrophoresis in detecting mutations in Marfan syndrome and related conditions, Journal of Medical Genetics, vol.39, issue.1, pp.34-41, 2002.
DOI : 10.1136/jmg.39.1.34

D. Halliday, S. Hutchinson, L. Lonie, J. Hurst, H. Firth et al., Twelve novel FBN1 mutations in Marfan syndrome and Marfan related phenotypes test the feasibility of FBN1 mutation testing in clinical practice, Journal of Medical Genetics, vol.39, issue.8, pp.589-93, 2002.
DOI : 10.1136/jmg.39.8.589

G. Matyas, D. Paepe, A. Halliday, D. Boileau, C. Pals et al., gene, Human Mutation, vol.14, issue.Suppl, pp.443-56, 2002.
DOI : 10.1002/(SICI)1098-1004(199911)14:5<440::AID-HUMU11>3.0.CO;2-P

B. Loeys, L. Nuytinck, I. Delvaux, D. Bie, S. et al., Genotype and Phenotype Analysis of 171 Patients Referred for Molecular Study of the Fibrillin-1 Gene FBN1 Because of Suspected Marfan Syndrome, Archives of Internal Medicine, vol.161, issue.20, pp.2447-54, 2001.
DOI : 10.1001/archinte.161.20.2447

K. Rommel, M. Karck, A. Haverich, J. Schmidtke, and M. Arslan-kirchner, Mutation screening of the fibrillin-1 (FBN1) gene in 76 unrelated patients with Marfan syndrome or Marfanoid features leads to the identification of 11 novel and three previously reported mutations, Human Mutation, vol.20, issue.5, pp.406-413, 2002.
DOI : 10.1002/humu.9075

I. Schrijver, W. Liu, R. Odom, T. Brenn, P. Oefner et al., Premature Termination Mutations in FBN1: Distinct Effects on Differential Allelic Expression and on Protein and Clinical Phenotypes, The American Journal of Human Genetics, vol.71, issue.2, pp.223-260, 2002.
DOI : 10.1086/341581

B. Loeys, D. Backer, J. Van-acker, P. Wettinck, K. Pals et al., gene favors locus homogeneity of classical Marfan syndrome, Human Mutation, vol.14, issue.2, pp.140-146, 2004.
DOI : 10.1002/humu.20070

P. Booms, J. Cisler, K. Mathews, M. Godfrey, F. Tiecke et al., Novel exon skipping mutation in the fibrillin-1 gene: Two 'hot spots' for the neonatal Marfan syndrome, Clinical Genetics, vol.42, issue.2, pp.110-117, 1999.
DOI : 10.1002/ajmg.1320420106

E. Putnam, M. Cho, A. Zinn, J. Towbin, P. Byers et al., Delineation of the Marfan phenotype associated with mutations in exons 23???32 of theFBN1 gene, American Journal of Medical Genetics, vol.346, issue.3, pp.233-275, 1996.
DOI : 10.1038/346281a0

F. Tiecke, S. Katzke, P. Booms, P. Robinson, L. Neumann et al., Classic, atypically severe and neonatal Marfan syndrome: twelve mutations and genotype???phenotype correlations in FBN1 exons??24???40, European Journal of Human Genetics, vol.9, issue.1, pp.13-21, 2001.
DOI : 10.1038/sj.ejhg.5200582

L. Lönnqvist, A. Child, K. Kainulainen, R. Davidson, L. Puhakka et al., A Novel Mutation of the Fibrillin Gene Causing Ectopia Lentis, Genomics, vol.19, issue.3, pp.573-579, 1994.
DOI : 10.1006/geno.1994.1110

L. Ades, K. Holman, M. Brett, M. Edwards, and B. Bennetts, Ectopia lentis phenotypes and the FBN1 gene, Am J Med Genet A, vol.126, issue.3, pp.284-293, 2004.

L. Ades, D. Sreetharan, E. Onikul, V. Stockton, K. Watson et al., Segregation of a novel FBN1 gene mutation, G1796E, with kyphoscoliosis and radiographic evidence of vertebral dysplasia in three generations

C. Hayward, M. Porteous, and D. Brock, A novel mutation in the fibrillin gene (FBN1) in familial arachnodactyly, Molecular and Cellular Probes, vol.8, issue.4, pp.325-332, 1994.
DOI : 10.1006/mcpr.1994.1045

H. Dietz, I. Mcintosh, L. Sakai, G. Corson, S. Chalberg et al., Four Novel FBN1 Mutations: Significance for Mutant Transcript Level and EGF-like Domain Calcium Binding in the Pathogenesis of Marfan Syndrome, Genomics, vol.17, issue.2, pp.468-75, 1993.
DOI : 10.1006/geno.1993.1349

S. Sood, Z. Eldadah, W. Krause, I. Mcintosh, and H. Dietz, Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome, Nature Genetics, vol.89, issue.2, pp.209-220, 1996.
DOI : 10.1038/nm0895-798

K. Kosaki, D. Takahashi, T. Udaka, R. Kosaki, M. Matsumoto et al., Molecular pathology of Shprintzen-Goldberg syndrome, American Journal of Medical Genetics Part A, vol.12, issue.1, pp.104-112, 2006.
DOI : 10.1002/ajmg.a.31006

P. Robinson, L. Neumann, S. Tinschert, . Response, and . Kosaki, Molecular pathology of Shprintzen-Goldberg syndrome, Am J Med Genet A, vol.140, issue.1, pp.109-119, 2006.

C. Stå-hl-hallengren, T. Ukkonen, K. Kainulainen, U. Kristofersson, T. Saxne et al., An extra cysteine in one of the non-calcium-binding Rev 7, 2003.

C. Black, A. Withers, J. Gray, A. Bridges, A. Craig et al., Correlation of a recurrent FBN1 mutation (R122C) with an atypical familial marfan syndrome phenotype, Human Mutation, vol.3, issue.S1, pp.198-200, 1998.
DOI : 10.1093/hmg/3.7.1069

L. Faivre, R. Gorlin, M. Wirtz, M. Godfrey, N. Dagoneau et al., In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome, Journal of Medical Genetics, vol.40, issue.1, pp.34-40, 2003.
DOI : 10.1136/jmg.40.1.34

URL : https://hal.archives-ouvertes.fr/inserm-00143439

N. Cariello, L. Cui, C. Beroud, and T. Soussi, Database and software for the analysis of mutations in the human p53 gene, Cancer Res, vol.54, issue.16, pp.4454-60, 1994.

C. Beroud, G. Collod-beroud, C. Boileau, T. Soussi, and C. Junien, UMD (Universal Mutation Database): A generic software to build and analyze locus-specific databases, Human Mutation, vol.3, issue.1, pp.86-94, 2000.
DOI : 10.1093/hmg/3.4.635

URL : https://hal.archives-ouvertes.fr/inserm-00143606

C. Beroud, D. Hamroun, G. Collod-beroud, C. Boileau, T. Soussi et al., UMD (Universal Mutation Database): 2005 update, ): 2005 update, pp.184-91, 2005.
DOI : 10.1002/humu.20210

URL : https://hal.archives-ouvertes.fr/inserm-00143605

G. Collod, C. Beroud, T. Soussi, C. Junien, and C. Boileau, Software and database for the analysis of mutations in the human FBN1 gene, Nucleic Acids Research, vol.24, issue.1, pp.137-177, 1996.
DOI : 10.1093/nar/24.1.137

URL : https://hal.archives-ouvertes.fr/inserm-00143165

G. Collod-beroud, C. Beroud, L. Ades, C. Black, M. Boxer et al., Marfan Database (second edition): software and database for the analysis of mutations in the human FBN1 gene, Nucleic Acids Research, vol.25, issue.1, pp.147-50, 1997.
DOI : 10.1093/nar/25.1.147

URL : https://hal.archives-ouvertes.fr/inserm-00143175

G. Collod-beroud, C. Beroud, L. Ades, C. Black, M. Boxer et al., Marfan Database (third edition): new mutations and new routines for the software, Nucleic Acids Research, vol.26, issue.1, pp.229-232, 1998.
DOI : 10.1093/nar/26.1.229

URL : https://hal.archives-ouvertes.fr/inserm-00143200

G. Collod-beroud, L. Bourdelles, S. Ades, L. Ala-kokko, L. Booms et al., polymorphism database, Human Mutation, vol.14, issue.3, pp.199-208, 2003.
DOI : 10.1002/humu.1380110112

URL : https://hal.archives-ouvertes.fr/inserm-00143263

J. 150-den-dunnen and S. Antonarakis, Nomenclature for the description of human sequence variations, Human Genetics, vol.109, issue.1, pp.121-125, 2001.
DOI : 10.1007/s004390100505

W. Liu, C. Qian, K. Comeau, T. Brenn, H. Furthmayr et al., Mutant fibrillin-1 monomers lacking EGF-like domains disrupt microfibril assembly and cause severe marfan syndrome, Human Molecular Genetics, vol.5, issue.10, pp.1581-1588, 1996.
DOI : 10.1093/hmg/5.10.1581

URL : https://academic.oup.com/hmg/article-pdf/5/10/1581/1707358/5-10-1581.pdf

D. Guo, F. Tan, A. Cantu, S. Plon, and D. Milewicz, FBN1 exon 2 splicing error in a patient with Marfan syndrome, American Journal of Medical Genetics, vol.275, issue.2, pp.130-134, 2001.
DOI : 10.1074/jbc.275.3.2205

P. Frischmeyer and H. Dietz, Nonsense-mediated mRNA decayin health and disease, Human Molecular Genetics, vol.8, issue.10, pp.1893-900, 1999.
DOI : 10.1093/hmg/8.10.1893

W. Liu, C. Qian, and U. Francke, Silent mutation induces exon skipping of fibrillin-1 gene in Marfan syndrome, Nature Genetics, vol.238, issue.4, pp.328-337, 1997.
DOI : 10.1038/ng0395-232

H. Dietz, R. Kendzior, and . Jr, Maintenance of an open reading frame as an additional level of scrutiny during splice site selection, Nature Genetics, vol.200, issue.2, pp.183-191, 1994.
DOI : 10.1038/352337a0

M. Caputi, R. Kendzior, . Jr, and K. Beemon, A nonsense mutation in the fibrillin-1 gene of a Marfan syndrome patient induces NMD and disrupts an exonic splicing enhancer, Genes & Development, vol.16, issue.14, pp.1754-1763, 2002.
DOI : 10.1101/gad.997502

G. Collod-beroud and C. Boileau, Marfan syndrome in the third Millennium, European Journal of Human Genetics, vol.15, issue.11, pp.673-81, 2002.
DOI : 10.1002/pd.1970151217

URL : https://hal.archives-ouvertes.fr/hal-01669348

M. Palz, F. Tiecke, P. Booms, B. Goldner, T. Rosenberg et al., Clustering of mutations associated with mild Marfan-like phenotypes in the 3? region ofFBN1 suggests a potential genotype-phenotype correlation, American Journal of Medical Genetics, vol.129, issue.3, pp.212-233, 2000.
DOI : 10.1083/jcb.129.4.1165

S. Hutchinson, A. Furger, D. Halliday, D. Judge, A. Jefferson et al., Allelic variation in normal human FBN1 expression in a family with Marfan syndrome: a potential modifier of phenotype?, Human Molecular Genetics, vol.12, issue.18, pp.2269-76, 2003.
DOI : 10.1093/hmg/ddg241

B. Giusti, R. Marcucci, I. Lapini, I. Sestini, M. Lenti et al., Role of hyperhomocysteinemia in aortic disease, Cell Mol Biol, vol.50, issue.8, pp.945-52, 2004.

Y. Shi and J. Massague, Mechanisms of TGF-?? Signaling from Cell Membrane to the Nucleus, Cell, vol.113, issue.6, pp.685-700, 2003.
DOI : 10.1016/S0092-8674(03)00432-X

C. Boileau, G. Jondeau, M. Babron, M. Coulon, J. Alexandre et al., Autosomal dominant Marfan-like connective-tissue disorder with aortic dilation and skeletal anomalies not linked to the fibrillin genes, Am J Hum Genet, vol.53, issue.1, pp.46-54, 1993.

G. Collod, M. Babron, G. Jondeau, M. Coulon, J. Weissenbach et al., A second locus for Marfan syndrome maps to chromosome 3p24.2???p25, Nature Genetics, vol.152, issue.3, pp.264-272, 1994.
DOI : 10.1001/jama.262.4.523

URL : https://hal.archives-ouvertes.fr/inserm-00143129

R. Parsons, L. Myeroff, B. Liu, J. Willson, S. Markowitz et al., Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer, Cancer Res, vol.55, issue.23, pp.5548-50, 1995.

K. Shin, Y. Park, and J. Park, Mutational analysis of the transforming growth factor beta receptor type II gene in hereditary nonpolyposis colorectal cancer and early-onset colorectal cancer patients, Clin Cancer Res, vol.6, issue.2, pp.536-576, 2000.

S. Markowitz, TGF-beta receptors and DNA repair genes, coupled targets in a pathway of human colon carcinogenesis, Biochim Biophys Acta, vol.1470, issue.1, pp.13-20, 2000.

S. Markowitz, J. Wang, L. Myeroff, R. Parsons, L. Sun et al., Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability, Science, vol.268, issue.5215, pp.1336-1344, 1995.
DOI : 10.1126/science.7761852

E. Disabella, M. Grasso, N. Marziliano, S. Ansaldi, C. Lucchelli et al., Two novel and one known mutation of the TGFBR2 gene in Marfan syndrome not associated with FBN1 gene defects, European Journal of Human Genetics, vol.19, issue.1, pp.34-42, 2006.
DOI : 10.1038/ng0598-17

F. Hecht and R. Beals, New'' syndrome of congenital contractural arachnodactyly originally described by Marfan in 1896, Pediatrics, vol.49, issue.4, pp.574-583, 1972.

C. Epstein, C. Graham, W. Hodgkin, F. Hecht, and A. Motulsky, Hereditary dysplasia of bone with kyphoscoliosis,contractures, and abnormally shaped ears, The Journal of Pediatrics, vol.73, issue.3, pp.379-86, 1968.
DOI : 10.1016/S0022-3476(68)80115-5

M. Arroyo, D. Weaver, and R. Beals, Congenital contractural arachnodactyly Report of four additional families and review of literature, Clinical Genetics, vol.4, issue.6, pp.570-81, 1985.
DOI : 10.1001/archpedi.1975.02120430019007

D. Viljoen, Congenital contractural arachnodactyly (Beals syndrome)., Journal of Medical Genetics, vol.31, issue.8, pp.640-643, 1994.
DOI : 10.1136/jmg.31.8.640

J. Jones, J. Lane, J. Logan, and M. Vanegas, Beals-Hecht Syndrome, Southern Medical Journal, vol.95, issue.7, pp.753-758, 2002.
DOI : 10.1097/00007611-200295070-00018

P. Gupta, E. Putnam, S. Carmical, I. Kaitila, B. Steinmann et al., mutations in congenital contractural arachnodactyly: Delineation of the molecular pathogenesis and clinical phenotype, Human Mutation, vol.16, issue.1, pp.39-48, 2002.
DOI : 10.1093/emboj/16.22.6659

E. Park, E. Putnam, D. Chitayat, A. Child, and D. Milewicz, Clustering ofFBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development, American Journal of Medical Genetics, vol.124, issue.4, pp.350-355, 1998.
DOI : 10.1002/(SICI)1096-8628(19980724)78:4<350::AID-AJMG9>3.0.CO;2-P

C. Maslen, D. Babcock, M. Raghunath, and B. Steinmann, A Rare Branch-Point Mutation Is Associated with Missplicing of Fibrillin-2 in a Large Family with Congenital Contractural Arachnodactyly, The American Journal of Human Genetics, vol.60, issue.6, pp.1389-98, 1997.
DOI : 10.1086/515472

D. Babcock, C. Gasner, U. Francke, and C. Maslen, A single mutation that results in an Asp to His substitution and partial exon skipping in a family with congenital contractural arachnodactyly, Human Genetics, vol.103, issue.1, pp.22-30, 1998.
DOI : 10.1007/s004390050777

M. Wang, C. Clericuzio, and M. Godfrey, Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2, Am J Hum Genet, vol.59, issue.5, pp.1027-1061, 1996.

P. Gupta, D. Wallis, T. Chin, H. Northrup, V. Tran-fadulu et al., FBN2 mutation associated with manifestations of Marfan syndrome and congenital contractural arachnodactyly, Journal of Medical Genetics, vol.41, issue.5, p.56, 2004.
DOI : 10.1136/jmg.2003.012880

F. Quondamatteo, D. Reinhardt, N. Charbonneau, G. Pophal, L. Sakai et al., Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development, Matrix Biology, vol.21, issue.8, pp.637-683, 2002.
DOI : 10.1016/S0945-053X(02)00100-2

M. Mariencheck, E. Davis, H. Zhang, F. Ramirez, J. Rosenbloom et al., Fibrillin-1 and Fibrillin-2 Show Temporal and Tissue-Specific Regulation of Expression in Developing Elastic Tissues, Connective Tissue Research, vol.68, issue.2, pp.87-97, 1995.
DOI : 10.1016/S0934-8832(11)80004-1

A. Wunsch, C. Little, and R. Markwald, Cardiac Endothelial Heterogeneity Defines Valvular Development as Demonstrated by the Diverse Expression of JB3, an Antigen of the Endocardial Cushion Tissue, Developmental Biology, vol.165, issue.2, pp.585-601, 1994.
DOI : 10.1006/dbio.1994.1278

B. Rongish, C. Drake, W. Argraves, and C. Little, Identification of the developmental marker, JB3-antigen, as fibrillin-2 and its de novo organization into embryonic microfibrous arrays, Developmental Dynamics, vol.129, issue.3, pp.461-71, 1998.
DOI : 10.1007/978-1-4615-3770-0_4

Q. Yang, K. Ota, Y. Tian, A. Kumar, J. Wada et al., Cloning of Rat Fibrillin-2 cDNA and Its Role in Branching Morphogenesis of Embryonic Lung, Developmental Biology, vol.212, issue.1, pp.229-271, 1999.
DOI : 10.1006/dbio.1999.9331

V. Browning, S. Chaudhry, A. Planchart, M. Dixon, and J. Schimenti, Mutations of the Mouse Twist and sy (Fibrillin 2) Genes Induced by Chemical Mutagenesis of ES Cells, Genomics, vol.73, issue.3, pp.291-299, 2001.
DOI : 10.1006/geno.2001.6523

K. Johnson, S. Cook, and Q. Zheng, The original shaker-with-syndactylism mutation ( sy ) is a contiguous gene deletion syndrome, Mammalian Genome, vol.9, issue.11, pp.889-92, 1998.
DOI : 10.1007/s003359900889

S. Chaudhry, J. Gazzard, C. Baldock, J. Dixon, M. Rock et al., Mutation of the gene encoding fibrillin-2 results in syndactyly in mice, Human Molecular Genetics, vol.10, issue.8, pp.835-878, 2001.
DOI : 10.1093/hmg/10.8.835

D. Milewicz, H. Chen, E. Park, E. Petty, H. Zaghi et al., Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections, The American Journal of Cardiology, vol.82, issue.4, pp.474-483, 1998.
DOI : 10.1016/S0002-9149(98)00364-6

P. Nicod, C. Bloor, M. Godfrey, D. Hollister, R. Pyeritz et al., Familial aortic dissecting aneurysm, Journal of the American College of Cardiology, vol.13, issue.4, pp.811-820, 1989.
DOI : 10.1016/0735-1097(89)90221-0

J. Lie, Aortic dissection in Turner's syndrome, American Heart Journal, vol.103, issue.6, pp.1077-80, 1982.
DOI : 10.1016/0002-8703(82)90577-4

N. Shachter, J. Perloff, and D. Mulder, Aortic dissection in Noonan's syndrome (46 XY Turner), The American Journal of Cardiology, vol.54, issue.3, pp.464-469, 1984.
DOI : 10.1016/0002-9149(84)90228-5

C. Leier, T. Call, P. Fulkerson, and C. Wooley, The Spectrum of Cardiac Defects in the Ehlers-Danlos Syndrome, Types I and III, Annals of Internal Medicine, vol.92, issue.2_Part_1, pp.171-179, 1980.
DOI : 10.7326/0003-4819-92-2-171

J. Lund, M. Jensen, and E. Hjelms, Aneurysm of the ductus arteriosus A review of the literature and the surgical implications, European Journal of Cardio-Thoracic Surgery, vol.5, issue.11, pp.566-70, 1991.
DOI : 10.1016/1010-7940(91)90220-E

D. Cusick, J. Frederiksen, and D. Mehlman, Acute aortic dissection: association with patent ductus arteriosus, Am J Card Imaging, vol.10, issue.3, pp.200-203, 1996.

V. Mckusick, R. Logue, and H. Bahson, Association of Aortic Valvular Disease and Cystic Medial Necrosis of the Ascending Aorta: Report of Four Instances, Circulation, vol.16, issue.2, pp.188-90, 1957.
DOI : 10.1161/01.CIR.16.2.188

V. Mckusick, ASSOCIATION OF CONGENITAL BICUSPID AORTIC VALVE AND ERDHEIM'S CYSTIC MEDIAL NECROSIS, The Lancet, vol.299, issue.7758, pp.1026-1033, 1972.
DOI : 10.1016/S0140-6736(72)91211-1

A. Biddinger, M. Rocklin, J. Coselli, and D. Milewicz, Familial thoracic aortic dilatations and dissections: A case control study, Journal of Vascular Surgery, vol.25, issue.3, pp.506-517, 1997.
DOI : 10.1016/S0741-5214(97)70261-1

URL : https://doi.org/10.1016/s0741-5214(97)70261-1

M. Coady, J. Rizzo, L. Goldstein, and J. Elefteriades, NATURAL HISTORY, PATHOGENESIS, AND ETIOLOGY OF THORACIC AORTIC ANEURYSMS AND DISSECTIONS, Cardiology Clinics, vol.17, issue.4, pp.615-650, 1999.
DOI : 10.1016/S0733-8651(05)70105-3

U. Francke, M. Berg, K. Tynan, T. Brenn, W. Liu et al., A Gly1127Ser mutation in an EGF-like domain of the fibrillin-1 gene is a risk factor for ascending aortic aneurysm and dissection, Am J Hum Genet, vol.56, issue.6, pp.1287-96, 1995.

G. Tromp, Y. Wu, D. Prockop, S. Madhatheri, C. Kleinert et al., Sequencing of cDNA from 50 unrelated patients reveals that mutations in the triple-helical domain of type III procollagen are an infrequent cause of aortic aneurysms., Journal of Clinical Investigation, vol.91, issue.6, pp.2539-2584, 1993.
DOI : 10.1172/JCI116490

D. Guo, S. Hasham, S. Kuang, C. Vaughan, E. Boerwinkle et al., Familial Thoracic Aortic Aneurysms and Dissections : Genetic Heterogeneity With a Major Locus Mapping to 5q13-14, Circulation, vol.103, issue.20, pp.2461-2469, 2001.
DOI : 10.1161/01.CIR.103.20.2461

S. Kakko, T. Raisanen, M. Tamminen, J. Airaksinen, K. Groundstroem et al., Candidate locus analysis of familial ascending aortic aneurysms and dissections confirms the linkage to the chromosome 5q13-14 in Finnish families, The Journal of Thoracic and Cardiovascular Surgery, vol.126, issue.1, pp.106-119, 2003.
DOI : 10.1016/S0022-5223(03)00037-0

C. Vaughan, M. Casey, J. He, M. Veugelers, K. Henderson et al., Identification of a Chromosome 11q23.2-q24 Locus for Familial Aortic Aneurysm Disease, a Genetically Heterogeneous Disorder, Circulation, vol.103, issue.20, pp.2469-75, 2001.
DOI : 10.1161/01.CIR.103.20.2469

S. Hasham, M. Willing, D. Guo, A. Muilenburg, R. He et al., Mapping a Locus for Familial Thoracic Aortic Aneurysms and Dissections (TAAD2) to 3p24-25, Circulation, vol.107, issue.25, pp.3184-90, 2003.
DOI : 10.1161/01.CIR.0000078634.33124.95

R. Smallridge, P. Whiteman, J. Werner, I. Campbell, P. Handford et al., Solution Structure and Dynamics of a Calcium Binding Epidermal Growth Factor-like Domain Pair from the Neonatal Region of Human Fibrillin-1, Journal of Biological Chemistry, vol.275, issue.14, pp.12199-206, 2003.
DOI : 10.1002/humu.10054

R. Smallridge, P. Whiteman, K. Doering, P. Handford, and A. Downing, EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1 1 1Edited by J. Karn, Journal of Molecular Biology, vol.286, issue.3, pp.661-669, 1999.
DOI : 10.1006/jmbi.1998.2536

J. Werner, V. Knott, P. Handford, I. Campbell, and A. Downing, Backbone dynamics of a cbEGF domain pair in the presence of calcium 1 1Edited by M. Summers, Journal of Molecular Biology, vol.296, issue.4, pp.1065-78, 2000.
DOI : 10.1006/jmbi.1999.3513

D. Reinhardt, R. Ono, and L. Sakai, Calcium Stabilizes Fibrillin-1 against Proteolytic Degradation, Journal of Biological Chemistry, vol.146, issue.2, pp.1231-1237, 1997.
DOI : 10.1002/(SICI)1096-8628(19960329)62:3<233::AID-AJMG7>3.0.CO;2-U

A. Mcgettrick, V. Knott, A. Willis, and P. Handford, Molecular effects of calcium binding mutations in Marfan syndrome depend on domain context, Human Molecular Genetics, vol.9, issue.13, pp.1987-94, 2000.
DOI : 10.1093/hmg/9.13.1987

V. Knott, A. Downing, C. Cardy, and P. Handford, Calcium Binding Properties of an Epidermal Growth Factor-like Domain Pair from Human Fibrillin-1, Journal of Molecular Biology, vol.255, issue.1, pp.22-29, 1996.
DOI : 10.1006/jmbi.1996.0003

J. Suk, S. Jensen, A. Mcgettrick, A. Willis, P. Whiteman et al., Structural Consequences of Cysteine Substitutions C1977Y and C1977R in Calcium-binding Epidermal Growth Factor-like Domain 30 of Human Fibrillin-1, Journal of Biological Chemistry, vol.9, issue.49, pp.51258-65, 2004.
DOI : 10.1107/S0021889891004399

S. Kettle, X. Yuan, G. Grundy, V. Knott, A. Downing et al., Defective Calcium Binding to Fibrillin-1: Consequence of an N2144S Change for Fibrillin-1 Structure and Function, Journal of Molecular Biology, vol.285, issue.3, pp.1277-87, 1999.
DOI : 10.1006/jmbi.1998.2368

T. Vollbrandt, K. Tiedemann, E. El-hallous, G. Lin, J. Brinckmann et al., Consequences of Cysteine Mutations in Calcium-binding Epidermal Growth Factor Modules of Fibrillin-1, Journal of Biological Chemistry, vol.94, issue.31, pp.32924-32955, 2004.
DOI : 10.1172/JCI117298

P. Whiteman, A. Downing, R. Smallridge, P. Winship, P. Handford et al., of Calcium-binding Epidermal Growth Factor-like Domains from Factor IX and Fibrillin-1, Journal of Biological Chemistry, vol.4, issue.14, pp.7807-7820, 1998.
DOI : 10.1093/hmg/4.suppl_1.1799

P. Whiteman, R. Smallridge, V. Knott, J. Cordle, A. Downing et al., A G1127S Change in Calcium-binding Epidermal Growth Factor-like Domain 13 of Human Fibrillin-1 Causes Short Range Conformational Effects, Journal of Biological Chemistry, vol.72, issue.20, pp.17156-62, 2001.
DOI : 10.1074/jbc.275.16.12339

D. Reinhardt, R. Ono, H. Notbohm, P. Muller, H. Bachinger et al., Mutations in Calcium-binding Epidermal Growth Factor Modules Render Fibrillin-1 Susceptible to Proteolysis, Journal of Biological Chemistry, vol.49, issue.16, pp.12339-12384, 2000.
DOI : 10.1159/000468621

I. Schrijver, W. Liu, T. Brenn, H. Furthmayr, and U. Francke, Cysteine Substitutions in Epidermal Growth Factor???Like Domains of Fibrillin-1: Distinct Effects on Biochemical and Clinical Phenotypes, The American Journal of Human Genetics, vol.65, issue.4, pp.1007-1027, 1999.
DOI : 10.1086/302582

P. Whiteman and P. Handford, Defective secretion of recombinant fragments of fibrillin-1: implications of protein misfolding for the pathogenesis of Marfan syndrome and related disorders, Human Molecular Genetics, vol.12, issue.7, pp.727-764, 2003.
DOI : 10.1093/hmg/ddg081

P. Handford, A. Downing, Z. Rao, D. Hewett, B. Sykes et al., The Calcium Binding Properties and Molecular Organization of Epidermal Growth Factor-like Domains in Human Fibrillin-1, Journal of Biological Chemistry, vol.268, issue.12, pp.6751-6757, 1995.
DOI : 10.1021/bi00487a018

P. Whiteman, A. Downing, and P. Handford, NMR analysis of cbEGF domains gives new insights into the structural consequences of a P1148A substitution in fibrillin-1, Protein Engineering Design and Selection, vol.11, issue.11, pp.957-966, 1998.
DOI : 10.1093/protein/11.11.957

C. Kielty and C. Shuttleworth, The role of calcium in the organization of fibrillin microfibrils, FEBS Letters, vol.352, issue.2, pp.323-329, 1993.
DOI : 10.1038/352334a0

C. Cardy and P. Handford, Metal ion dependency of microfibrils supports a rod-like conformation for fibrillin-1 calcium-binding epidermal growth factor-like domains 1 1Edited by M. F. Moody, Journal of Molecular Biology, vol.276, issue.5, pp.855-60, 1998.
DOI : 10.1006/jmbi.1997.1593

T. Wess, P. Purslow, M. Sherratt, J. Ashworth, C. Shuttleworth et al., Calcium Determines the Supramolecular Organization of Fibrillin-rich Microfibrils, The Journal of Cell Biology, vol.413, issue.3, pp.829-866, 1998.
DOI : 10.1006/jmbi.1997.1449

T. Sasaki, K. Mann, G. Murphy, M. Chu, and R. Timpl, Different Susceptibilities of Fibulin-1 and Fibulin-2 to Cleavage by Matrix Metalloproteinases and Other Tissue Proteases, European Journal of Biochemistry, vol.52, issue.2, pp.427-461, 1996.
DOI : 10.1002/(SICI)1097-0177(199603)205:3<348::AID-AJA13>3.3.CO;2-T

P. Colosetti, U. Hellman, C. Heldin, and K. Miyazono, binding of latent transforming growth factor-??1 binding protein, FEBS Letters, vol.1, issue.2, pp.140-144, 1993.
DOI : 10.1016/0962-8924(91)90068-K

M. 227-hyytiäinen, J. Taipale, C. Heldin, and J. Keski-oja, Recombinant latent transforming growth factor beta-binding protein 2 assembles to fibroblast extracellular matrix and is susceptible to proteolytic processing and release

P. Booms, F. Tiecke, T. Rosenberg, C. Hagemeier, and P. Robinson, Differential effect of FBN1 mutations on in vitro proteolysis of recombinant fibrillin-1 fragments, Human Genetics, vol.107, issue.3, pp.216-240, 2000.
DOI : 10.1007/s004390000368

P. Robinson and P. Booms, Human Genome and Diseases:??The molecular pathogenesis of the Marfan syndrome, Cellular and Molecular Life Sciences, vol.58, issue.11, pp.1698-707, 2001.
DOI : 10.1007/PL00000807

K. Fleischer, H. Nousari, G. Anhalt, C. Stone, and J. Laschinger, Immunohistochemical Abnormalities of Fibrillin in Cardiovascular Tissues in Marfan???s Syndrome, The Annals of Thoracic Surgery, vol.63, issue.4, pp.1012-1019, 1997.
DOI : 10.1016/S0003-4975(97)00061-1

A. Segura, R. Luna, K. Horiba, W. Stetler-stevenson, H. Mcallister et al., Immunohistochemistry of matrix metalloproteinases and their inhibitors in thoracic aortic aneurysms and aortic valves of patients with Marfan's syndrome, Circulation, vol.98, pp.331-338, 1998.

N. Sachdev, D. Girolamo, N. Mccluskey, P. Jennings, A. Mcguinness et al., Lens dislocation in Marfan syndrome: potential role of matrix metalloproteinases in fibrillin degradation, Arch Ophthalmol, vol.120, issue.6, pp.833-838, 2002.

J. Ashworth, G. Murphy, M. Rock, M. Sherratt, S. Shapiro et al., Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling, Biochemical Journal, vol.340, issue.1, pp.171-81, 1999.
DOI : 10.1042/bj3400171

T. Hering, Regulation of chondrocyte gene expression, Frontiers in Bioscience, vol.4, issue.4, pp.743-61, 1999.
DOI : 10.2741/A391

G. Homandberg, Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments, Frontiers in Bioscience, vol.4, issue.4, pp.713-743, 1999.
DOI : 10.2741/A389

B. Hu, Y. Kapila, M. Buddhikot, M. Shiga, and S. Kapila, Coordinate induction of collagenase-1, stromelysin-1 and urokinase plasminogen activator (uPA) by the 120-kDa cell-binding fibronectin fragment in fibrocartilaginous cells: uPA contributes to activation of procollagenase-1, Matrix Biology, vol.19, issue.7, pp.657-69, 2000.
DOI : 10.1016/S0945-053X(00)00114-1

R. Loeser, C. Forsyth, A. Samarel, and H. Im, Fibronectin Fragment Activation of Proline-rich Tyrosine Kinase PYK2 Mediates Integrin Signals Regulating Collagenase-3 Expression by Human Chondrocytes through a Protein Kinase C-dependent Pathway, Journal of Biological Chemistry, vol.98, issue.27, pp.24577-85, 2003.
DOI : 10.1074/jbc.274.21.14893

P. Booms, R. Pregla, A. Ney, F. Barthel, D. Reinhardt et al., RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: A potential factor in the pathogenesis of the Marfan syndrome, Human Genetics, vol.219, issue.1-2, pp.1-2, 2005.
DOI : 10.1016/B978-012545090-4/50012-4

P. Booms, A. Ney, F. Barthel, G. Moroy, D. Counsell et al., A fibrillin-1-fragment containing the??elastin-binding-protein GxxPG consensus sequence upregulates matrix metalloproteinase-1: biochemical and??computational analysis, Journal of Molecular and Cellular Cardiology, vol.40, issue.2, pp.234-280, 2006.
DOI : 10.1016/j.yjmcc.2005.11.009

H. Munshi, Y. Wu, S. Mukhopadhyay, A. Ottaviano, A. Sassano et al., Differential Regulation of Membrane Type 1-Matrix Metalloproteinase Activity by ERK 1/2- and p38 MAPK-modulated Tissue Inhibitor of Metalloproteinases 2 Expression Controls Transforming Growth Factor-??1-induced Pericellular Collagenolysis, Journal of Biological Chemistry, vol.164, issue.37, pp.39042-50, 2004.
DOI : 10.1016/S0002-9440(10)63138-0

T. Bunton, N. Biery, L. Myers, B. Gayraud, F. Ramirez et al., Phenotypic Alteration of Vascular Smooth Muscle Cells Precedes Elastolysis in a Mouse Model of Marfan Syndrome, Circulation Research, vol.88, issue.1, pp.37-43, 2001.
DOI : 10.1161/01.RES.88.1.37

D. Judge, N. Biery, D. Keene, J. Geubtner, L. Myers et al., Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome, Journal of Clinical Investigation, vol.114, issue.2, pp.172-81, 2004.
DOI : 10.1172/JCI200420641

E. Neptune, P. Frischmeyer, D. Arking, L. Myers, T. Bunton et al., Dysregulation of TGF-?? activation contributes to pathogenesis in Marfan syndrome, Nature Genetics, vol.33, issue.3, pp.407-418, 2003.
DOI : 10.1038/ng1116

C. Ng, A. Cheng, L. Myers, F. Martinez-murillo, C. Jie et al., TGF-?????dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome, Journal of Clinical Investigation, vol.114, issue.11, pp.1586-92, 2004.
DOI : 10.1172/JCI200422715

F. Ramirez and D. Rifkin, Cell signaling events: a view from the matrix, Matrix Biology, vol.22, issue.2, pp.101-108, 2003.
DOI : 10.1016/S0945-053X(03)00002-7

J. Wood, D. Bellamy, A. Child, and K. Citron, Pulmonary disease in patients with Marfan syndrome., Thorax, vol.39, issue.10, pp.780-784, 1984.
DOI : 10.1136/thx.39.10.780

D. Rigante, G. Segni, and A. Bush, Persistent Spontaneous Pneumothorax in an Adolescent with Marfan???s Syndrome and Pulmonary Bullous Dysplasia, Respiration, vol.68, issue.6, pp.621-625, 2001.
DOI : 10.1159/000050584

H. Dietz, B. Loeys, L. Carta, and F. Ramirez, Recent progress towards a molecular understanding of Marfan syndrome, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.87, issue.1, pp.4-9, 2005.
DOI : 10.1161/01.RES.88.1.37

G. Corson, S. Chalberg, H. Dietz, N. Charbonneau, and L. Sakai, Fibrillin Binds Calcium and Is Coded by cDNAs That Reveal a Multidomain Structure and Alternatively Spliced Exons at the 5??? End, Genomics, vol.17, issue.2, pp.476-84, 1993.
DOI : 10.1006/geno.1993.1350

W. Grady, A. Rajput, L. Myeroff, D. Liu, K. Kwon et al., Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas, Cancer Res, vol.58, issue.14, pp.3101-3105, 1998.

C. Lücke, A. Philpott, J. Metcalfe, A. Thompson, L. Hughes-davies et al., Inhibiting mutations in the transforming growth factor beta type 2 receptor in recurrent human breast cancer, Cancer Res, vol.61, issue.2, pp.482-487, 2001.