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ARTICLE

Premature commitment to uncertain decisions
during human NMDA receptor hypofunction
Alexandre Salvador1,2,3,4, Luc H. Arnal 5, Fabien Vinckier3,4,6, Philippe Domenech 7,8,

Raphaël Gaillard3,4,9,10 & Valentin Wyart 1,2,10✉

Making accurate decisions based on unreliable sensory evidence requires cognitive inference.

Dysfunction of n-methyl-d-aspartate (NMDA) receptors impairs the integration of noisy

input in theoretical models of neural circuits, but whether and how this synaptic alteration

impairs human inference and confidence during uncertain decisions remains unknown.

Here we use placebo-controlled infusions of ketamine to characterize the causal effect

of human NMDA receptor hypofunction on cognitive inference and its neural correlates.

At the behavioral level, ketamine triggers inference errors and elevated decision uncertainty.

At the neural level, ketamine is associated with imbalanced coding of evidence and premature

response preparation in electroencephalographic (EEG) activity. Through computational

modeling of inference and confidence, we propose that this specific pattern of behavioral and

neural impairments reflects an early commitment to inaccurate decisions, which aims at

resolving the abnormal uncertainty generated by NMDA receptor hypofunction.
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In uncertain environments where sensory observations are
unreliable, making decisions requires the combination of
multiple pieces of ambiguous or even conflicting sensory

information to form accurate beliefs about their generative cause
or their consequences1. This form of “cognitive inference” can be
described in terms of probabilistic (Bayesian) reasoning, where
beliefs correspond to posterior distributions of hidden states of
the environment given the available evidence2. In practice, this
inference process has been extensively modeled in terms of a
gradual evidence accumulation process3 that implements—or
approximates—normative Bayesian inference4,5. Previous
research in humans has shown that the accuracy of this accu-
mulation process is not bounded by the ability to maintain
accumulated evidence over time6,7, but by a limited computa-
tional precision8 —i.e., random variability (noise) during the
accumulation of evidence itself. These findings set the precision of
inference as an important cognitive “bottleneck” on decision-
making under uncertainty9,10.

Theoretical models of neural circuits have identified n-methyl-d-
aspartate (NMDA) synaptic receptors as necessary for the accurate
integration of noisy input11,12. Indeed, hypofunction of NMDA
receptors has been proposed to destabilize the attractor-like
dynamics observed in these circuits, by altering the strength of
recurrent synaptic connectivity. At the cognitive level, this synaptic
alteration is thought to impair inference in a way that can trigger
decision biases13, “jumping to conclusions”14,15, but also deficits in
confidence16. Together, this theoretical work confers a central role
to NMDA receptors in the computational precision of neural cir-
cuits implementing cognitive inference. However, and despite the
breadth of this work, direct experimental characterization of the
effects of NMDA receptor hypofunction on inference and con-
fidence during uncertain decisions is still missing.

To address this issue, we administered sub-anesthetic infusions of
ketamine, a non-competitive NMDA receptor antagonist17, to
healthy adult volunteers performing a visual cue combination task
in a placebo-controlled, double-blind randomized crossover trial.
The task was designed to provide specific estimates of the precision
of cognitive inference, by measuring participants’ ability to integrate
the evidence provided by successive stimuli over several seconds7,8.
We relied on a validated model of decision-making to decompose
the sources of human decision errors in this task across sensory,
inference and response selection stages of processing8. We further
recorded electroencephalographic (EEG) activity from tested par-
ticipants to identify which neural computations are altered under
ketamine, from the visual processing of each cue up to the accu-
mulation of the evidence provided by the same cues. Finally, by
offering participants the opportunity to waive each of their deci-
sions when judged as insufficiently accurate, we measured the effect
of ketamine on decision uncertainty.

In this work, we present converging evidence that NMDA
receptor hypofunction increases decision uncertainty but simulta-
neously drives a premature commitment to inaccurate decisions.
Using computational modeling of inference and confidence, we
show how this mechanism compensates for the elevated decision
uncertainty generated by NMDA receptor hypofunction.

Results
Pharmacological protocol. Healthy adult volunteers (N= 20)
performed a visual cue combination task while being administered
either ketamine or sodium chloride (placebo) intravenously, using
a three-stage infusion protocol (Fig. 1). Each tested participant
performed the task under ketamine (K+) and placebo (K−),
during two experimental sessions taking place on separate days in
a counterbalanced, double-blind order across participants. Our
pharmacological protocol was developed using simulations of the

pharmacokinetic parameters of a three-compartment model, and
aimed at achieving constant plasma concentration of ketamine of
150 ng/mL during task execution, which started 30min after
infusion onset (Fig. 1a, see “Methods”). Two participants were
excluded because they did not complete the task under ketamine,
leaving N= 18 participants in all analyses.

Blood samples taken moments before and after task execution
(at 30 min and ~90 min after infusion start) confirmed stable
plasma concentration of ketamine close to target (Supplementary
Fig. 1a; 30 min: 167.8 ± 11.4 ng/mL, mean ± s.e.m.; 90 min:
167.2 ± 9.5 ng/mL; paired t test, t17= 0.1, p= 0.945). Further-
more, ratings on psychiatric symptom scales showed known
“dissociative” effects of ketamine18 (Fig. 1b and Supplementary
Fig. 1b, see “Methods”), accompanied by a mild elevation of
blood pressure (Supplementary Fig. 1c).

Cue combination task. In every trial, participants observed a
sequence of 4 to 12 visual stimuli, after which they were asked to
indicate which category (among two possible ones) they judged
the sequence to have been drawn from (Fig. 1c). Stimuli corre-
sponded to oriented bars drawn from one of two overlapping
probability distributions (categories) centered on orthogonal
orientations, each associated with a color. The positions of the
two colors on the circle varied randomly across trials, a task
feature which decorrelated the orientation of stimuli from the
evidence they provide to the decision process (see “Methods”).
The difficulty of the task was adapted online using a titration
procedure to reach similar decision accuracies under ketamine
and placebo (Fig. 1d, e; ketamine: 76.1 ± 0.9%; placebo:
77.9 ± 0.8%; t17=−1.7, p= 0.106).

At the end of every trial, participants were offered the possibility
to opt out of their decision, in which case they were rewarded not
based on the accuracy of their decision, but based on the outcome
of a lottery of known probability of success which varied from trial
to trial (Fig. 1c, see “Methods”). Because decision accuracy did not
differ between conditions, we could use opt-out decisions
to measure the effect of ketamine on decision uncertainty. Like
decision accuracy, mean response times did not differ between
ketamine and placebo (Fig. 1d; ketamine: 757 ± 34ms; placebo:
761 ± 30ms; t17=−0.2, p= 0.845). Nevertheless, participants opted
out of their decisions substantially more often under ketamine than
placebo (Fig. 1d, e; ketamine: 42.9 ± 2.5%; placebo: 34.4 ± 2.0%;
t17= 4.3, p < 0.001). This finding suggests elevated decision
uncertainty under ketamine, despite matched decision accuracy.

Increased decision uncertainty under ketamine. The decision of
opting out of a decision should be made by comparing the
expected accuracy of the decision based on the accumulated
evidence to the probability of success of the presented lottery. The
higher fraction of opt-out decisions observed under ketamine
despite matched decision accuracy could thus reflect different
effects: 1. weaker metacognitive sensitivity to the expected accu-
racy of the decision, 2. stronger reliance on the presented lottery
than the expected accuracy, or 3. a lower decision criterion for
opting out. To arbitrate between these different accounts, we
constructed psychometric curves of opt-out rate as a function of
the expected accuracy and the probability of success of the pre-
sented lottery (Fig. 2a, see “Methods”).

Comparing these curves between conditions revealed a clear
upward shift under ketamine (expected accuracy: F1,17= 13.9,
p= 0.002; lottery probability: F1,17= 18.5, p < 0.001), but no
measurable difference between their slopes (expected accuracy:
t17=−1.1, p= 0.273; lottery probability: t17=−1.0, p= 0.323).
Modeling the comparison between these two variables through
logistic regression (Fig. 2b, see “Methods”) captured the
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difference between psychometric curves by a lower opt-out
criterion under ketamine (t17=−4.6, p < 0.001). These findings
indicate that participants opted out of their decisions for higher
expected accuracy (and, conversely, lower probability of success
of the lottery) under ketamine—despite matched decision
accuracy and accurate metacognitive evaluation. This effect is

consistent with elevated decision uncertainty (i.e., lower sub-
jective accuracy of decisions) under ketamine.

Impaired cognitive inference under ketamine. To measure
the accuracy of cognitive inference under ketamine, we used a
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each category. At the end of each trial, participants are offered the possibility to opt out of their decision, in which case they are rewarded not based on
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Source data are provided as a Source Data file.
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validated computational model8 (Fig. 3a) which considers sepa-
rate sources of internal errors during sensory processing, infer-
ence and response selection. We first looked for significant
sources of sensory, inference and selection errors under placebo
and ketamine using a factorized Bayesian model selection pro-
cedure (Fig. 3b, see “Methods”). This analysis, performed sepa-
rately in the two conditions, identified a single source of internal
errors located at the inference stage (placebo: exceedance
p= 0.998; ketamine: exceedance p= 0.996). Neither sensory nor
selection errors were detected in either condition (all exceedance
p < 0.010). The presence of a single source of inference errors in
both conditions, validated through a “model recovery”
procedure19 (Supplementary Fig. 2a), validates inference as the
main cognitive “bottleneck” in this task.

To quantify the accuracy of this process, we then measured the
magnitude of inference errors by two complementary means
(Fig. 3c): 1. by estimating participants’ decision sensitivity to the
true evidence provided by each sequence of stimuli through
logistic regression, and 2. by modeling and fitting the spread of
inference noise (see “Methods”). These analyses yielded conver-
ging results: lower sensitivity to the true evidence under ketamine
(t17= 2.7, p= 0.014), along with a 19% increase in the spread of
inference noise (placebo: 0.474 ± 0.030; ketamine: 0.562 ± 0.046;
t17= 3.3, p= 0.004). We confirmed these results through
Bayesian model selection, by asking which source of internal
errors was most likely to increase under ketamine (Fig. 3d;
inference errors: exceedance p= 0.987). To further validate these
results19, we estimated the variability (inverse sensitivity) of
participants’ decisions and model simulations separately for
each condition and each sequence length n (4, 8 or 12 stimuli,
Fig. 3d). As expected by the presence of inference errors which
accumulate across stimuli8, decision variability increased approxi-
mately linearly with sequence length (repeated-measures
ANOVA, F2,34= 21.4, p < 0.001). Furthermore, decision varia-
bility increased more rapidly under ketamine than placebo
(interaction: F2,34= 3.7, p= 0.036). Both effects were explained
by increased inference errors under ketamine. Computing
participants’ psychophysical kernels using logistic regression
(Supplementary Fig. 2b) indicated that ketamine did not strongly
impair participants’ ability to accumulate evidence over time.
Indeed, ketamine dampened participants’ psychophysical kernels

but did not selectively decrease the weight of stimuli presented
early in each sequence. Accordingly, the moderate inference
leak fitted using the model increased only marginally under
ketamine (placebo: 0.054 ± 0.014; ketamine: 0.082 ± 0.014; differ-
ence: t17= 2.1, p= 0.051).

Both the magnitude of inference errors and the opt-out criterion
showed a strong within-participant reliability across conditions
(inference errors: Pearson r= 0.832, d.f.= 16, p < 0.001; opt-out
criterion: Pearson r= 0.651, d.f.= 16, p= 0.003). Furthermore,
these two cognitive parameters correlated negatively with each other
(Supplementary Fig. 2c; Pearson r=−0.541, d.f.= 34, p < 0.001):
participants making more inference errors used a lower opt-out
criterion than participants making less inference errors. We also
found a significant relationship between the effects of ketamine on
these two cognitive parameters (Supplementary Fig. 2c; Pearson
r= 0.636, d.f.= 16, p= 0.005): large increases in inference errors
were associated with large decreases in the opt-out criterion. This
covariation suggests that the increase in opt-out rate triggered by
ketamine does not reflect a task-unspecific effect of ketamine nor a
biased subjective probability of success of the lottery, but rather a
selective effect of the drug on the subjective accuracy of cognitive
inference.

Degraded neural processing of evidence under ketamine. To
identify the neural locus of ketamine effects on cognitive infer-
ence, we characterized the neural processing of each stimulus
using time-resolved analyses of task-related EEG signals. Due to
the rapid sequential presentation of stimuli in our task, standard
event-related potentials (ERPs) cannot be interpreted without
confounds (Supplementary Fig. 3). We have therefore relied on a
neural coding approach which ties EEG signals to the processing
of specific stimulus characteristics20–23. First, we described each
stimulus k (about 2400 per condition and per participant) by two
distinct characteristics: 1. its orientation, and 2. the strength of the
evidence it provides to the inference process. Because the orien-
tations of category axes varied from trial to trial, these two
characteristics were independent of each other. We then applied
multivariate pattern analyses to EEG signals aligned to stimulus
onset to estimate the neural “codes” associated with these two
characteristics (see “Methods”). Owing to the fine temporal
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resolution of EEG signals, we could extract the time course of
neural information processing within the first hundreds of mil-
liseconds following stimulus onset.

The neural coding of stimulus orientation (Fig. 4a, top) peaked
at 100 ms following stimulus onset (jackknifed mean, ketamine:
99.2 ms; placebo: 99.5 ms), and did not differ between ketamine
and placebo conditions (Supplementary Fig. 4a, b; peak precision:
t17= 1.7, p= 0.109). This neural code overlapped only slightly
across successive stimuli (Supplementary Fig. 4c), and was
supported by spectral content up to 16 Hz (measured as the
frequency cutoff above which coding precision starts to decrease;
see Supplementary Fig. 5). The intact orientation processing
observed under ketamine is consistent with behavioral modeling,
which did not identify any significant source of sensory errors in
either condition (Fig. 3).

The neural coding of the evidence provided by the same stimuli
(Fig. 4a, bottom) showed a very different picture: it peaked at
300ms following stimulus onset (jackknifed mean, ketamine:
292.3ms; placebo: 314.2 ms), and decreased substantially under
ketamine from 250 to 450ms following stimulus onset (peak
t17= 4.8, cluster-corrected p < 0.001), including its peak (Supple-
mentary Fig. 4a,b; t17=−2.4, p= 0.026). Furthermore, and in
contrast to the neural code of stimulus orientation, the neural code
of stimulus evidence overlapped strongly across successive stimuli
(Supplementary Fig. 4c) and was supported by spectral content
below 8Hz (Supplementary Fig. 5). This degraded neural
processing of stimulus evidence under ketamine mirrors the larger
inference errors identified when modeling behavior (Fig. 3). To
validate this “brain-behavior” relation21,22, we tested whether the
neural coding of stimulus evidence under ketamine correlated with
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the contribution of the same stimulus to the upcoming decision
(Supplementary Fig. 6a, see “Methods”). We found that stimuli
associated with overestimated evidence in EEG signals contributed
more strongly to the upcoming decision (Supplementary Fig. 6b,c;
β= 0.053 ± 0.013, t17= 4.3, p < 0.001). This relation between neural
and behavioral variability indicates that the neural coding of
stimulus evidence reflects the noisy representation of momentary
evidence being accumulated by participants.

In both conditions, the neural coding of stimulus orientation
relied on occipital channels overlying visual cortex (Fig. 4b, top),
with a strong rostro-caudal gradient in coding precision. By
contrast, the neural coding of stimulus evidence showed in both
conditions a much more distributed spatial topography, peaking at
parietal and frontal channels overlying associative cortex (Fig. 4b,
bottom). Cross-condition generalization analyses (Supplementary
Fig. 7a, see “Methods”) supported shared neural codes of each
characteristic across conditions, and confirmed the lower signal-to-
noise ratio for evidence processing under ketamine (Supplementary
Fig. 7b, c; stimulus orientation: t17= 1.4, p= 0.178; stimulus
evidence: t17=−3.7, p= 0.002). Together, these results indicate
that ketamine degrades the neural processing of stimulus evidence
at parietal and frontal channels, without any detectable alteration of
orientation processing at occipital channels.

Imbalanced neural processing of evidence under ketamine. To
determine whether ketamine degrades the neural processing of
stimulus evidence irrespective of the ongoing inference process,
we compared the neural coding of stimulus evidence between
stimuli consistent with the decision provided at the end of the
trial (i.e., the output of the inference process), and stimuli con-
flicting with the same decision (see “Methods”). A balanced
inference process should assign equal weights to all stimuli irre-
spective of their consistency with the subsequent decision,
whereas an imbalanced inference process should result in stron-
ger weights for consistent than conflicting stimuli—a form of
“circular” (self-reinforcing) inference.

The orientation of consistent and conflicting stimuli could be
decoded equally well from EEG signals, in both conditions
(Fig. 5a, left). By contrast, the evidence provided by conflicting
stimuli could be decoded less precisely than the evidence
provided by consistent stimuli from 115 to 400 ms following
stimulus onset (Fig. 5a, right; peak F1,17= 11.0, cluster-
corrected p < 0.001). This coding unbalance was only present
under ketamine, not placebo (Fig. 5b; ketamine: t17=−4.6,
p < 0.001; placebo: t17=−1.0, p= 0.342; interaction:
F1,17= 7.6, p= 0.014). Examining the dynamics of coding
imbalance over the course of each sequence (Fig. 5c) provided
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additional information. Evidence coding was balanced through-
out each sequence under placebo, corresponding to a steady
neural coding of consistent and conflicting stimuli (coding
change, consistent: β=−0.069 ± 0.035, t17=−2.0, p= 0.067;
conflicting: β=−0.060 ± 0.037, t17=−1.6, p= 0.127; differ-
ence: t17= 0.3, p= 0.746). By contrast, the coding unbalance
observed under ketamine increased throughout each sequence,
due to a decrease in the neural coding of conflicting evidence
(consistent: β=−0.009 ± 0.035, t17=−0.2, p= 0.814; conflict-
ing: β=−0.109 ± 0.031, t17=−3.6, p= 0.002; difference:
t17= 2.2, p= 0.044). Importantly, the dependence of stimulus
processing on other contextual variables such as the degree of
change between successive stimuli (Supplementary Fig. 8)
showed no difference between conditions. This pattern of
effects indicates that ketamine dampens selectively the neural
processing of conflicting evidence.

Premature response preparation under ketamine. The proces-
sing imbalance observed under ketamine is expected to drive less

accurate, but also faster decisions in theories of NMDA receptor
hypofunction. Here, participants were required to wait until a
“go” signal to provide their response (Fig. 1c)—an instruction
which they followed in both conditions (see “Methods”). We
therefore looked for covert response preparation activity in band-
limited EEG power24,25, a well-validated measure which we could
compare between conditions (Fig. 6, see “Methods”).

In agreement with previous work26,27, we found that ketamine
decreased baseline power in the alpha (10 Hz) and beta (20 Hz)
bands and dampened the strong power suppression in these
frequency bands during visual stimulation (Supplementary
Fig. 9a, b). Despite these broad effects of ketamine, the additional
power suppression triggered by response execution in the alpha
band (10 Hz) at bilateral central channels (Fig. 6a) did not differ
between conditions. We could thus use this motor signal to
predict the provided response (left- vs. right-handed) in the last
few seconds preceding its execution—even before the presenta-
tion of the “go” signal which probed participants for a response.

Because each sequence consisted of a variable number of
ambiguous (often conflicting) stimuli, participants should wait
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until the “go” signal to prepare and execute their response. First,
we verified that the provided response could be decoded from
alpha power during response execution (placebo: t17= 3.9,
p < 0.001; ketamine: t17= 3.7, p < 0.001; difference: t17=−0.5,
p= 0.599). Second, the time course of alpha power projected on
this response-sensitive axis matched the expected profile of
response preparation under placebo (Fig. 6b and Supplementary
Fig. 9c, d). Indeed, the upcoming response could be predicted
from alpha power only in the last 400 ms before response
execution (peak t17= 3.9, cluster-corrected p < 0.001)—well after
the “go” signal. By contrast, under ketamine, the upcoming
response could be predicted over a much longer time period
extending well before the “go” signal, from 1460 ms before
response execution (peak t17= 5.2, cluster-corrected p < 0.001).
These differences resulted in stronger response activity under
ketamine from 1080 to 660 ms before response execution (peak
t17= 2.8, cluster-corrected p= 0.044)—including the onset of the
“go” signal (t17= 2.4, p= 0.030). This premature response
preparation is consistent with the early decision times predicted
by theories of NMDA receptor hypofunction.

Premature commitment model of ketamine effects. We
observed a specific set of neural alterations under ketamine: (1) a
degraded and progressively unbalanced processing of stimulus
evidence in associative cortex (Fig. 5), and (2) a premature
response preparation in motor cortex (Fig. 6). To characterize
their origin, we developed a process-level account of ketamine
effects which makes testable empirical predictions (Fig. 7a). Our
model proposes that ketamine triggers a premature commitment
to inferred beliefs in the middle of some trials: the covert selection
of the category supported by the accumulated evidence before
being probed for a decision (a form of “jumping to conclusions”),
followed by the selective integration of evidence consistent with
the selected category and the discarding of evidence conflicting
with the selected category (a form of “confirmation bias”).

We simulated the effects of these premature commitments on
cognitive inference by perturbing the noisy inference model which
best describes participants’ behavior under placebo (see “Methods”).
We found that occasional premature commitments (corresponding
to a probability p of 5% following each stimulus) were sufficient to

reproduce all identified ketamine effects: (1) a moderate increase in
inference errors (Figs. 7b), (2) a progressively imbalanced coding of
stimulus evidence (Fig. 7c), and (3) a premature response
preparation, assuming that this motor activity reflects the covert
initiation of the response after commitment to a category (before
the “go” signal when a premature commitment has occurred).

Relation between premature commitments and decision
uncertainty. Similar “jumping to conclusions” effects have already
been described, but in participants or conditions associated with
high decision confidence14,15, something which stands at odds
with the increased decision uncertainty observed here under
ketamine (Fig. 2). To better understand the relation between
premature commitments and decision uncertainty, we simulated
the model for different probabilities of premature commitments
and different levels of decision uncertainty (Fig. 7d). We reasoned
that a reduced coding of conflicting stimuli (which should result in
a reduced contribution of these stimuli to the subsequent decision)
should mechanically increase the amount of accumulated evi-
dence, and therefore decrease decision uncertainty. Simulations
showed that premature commitments indeed provide an effective
compensation for increased decision uncertainty: the presence of
premature commitments reduces the overall probability of opting
out (Fig. 7d) and, conversely, the neural signatures of premature
commitments are more pronounced in trials ending with a vali-
dation of the initial decision than trials ending with opt-out
(Supplementary Fig. 10a, b).

In simulations, occasional premature commitments decrease
only moderately the overall opt-out rate (from 0.465 to 0.441 for a
probability p of 5%). In other words, premature commitments
provide only a partial compensation for the large increase in opt-
out rate triggered by the elevated decision uncertainty observed
under ketamine (from 0.341 to 0.465 in simulations without
premature commitments). However, on the trials where a
premature commitment has occurred, simulations show a strong
reduction in opt-out rate (0.286 instead of 0.465 in simulations
without premature commitment).

In the EEG data, we first examined whether the imbalanced
neural coding of stimulus evidence was more pronounced in trials
ending with a validation of the initial decision (Fig. 8a). As
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predicted, these trials showed strong coding imbalance from 110
to 340 ms following stimulus onset (peak F1,17= 16.4, cluster-
corrected p < 0.001), significant under ketamine (160–400 ms,
peak t17= 4.1, cluster-corrected p < 0.001) but also placebo
(110–290 ms, peak t17= 3.5, cluster-corrected p= 0.014). By
contrast, trials where participants opted out from their decisions
did not show significant coding imbalance, even at the time point
level. As in simulations (Supplementary Fig. 10a), ketamine and
decision validation had non-interacting relations with coding
imbalance (Fig. 8b; main effect of ketamine: F1,17= 8.2, p= 0.010;
main effect of decision validation: F1,17= 4.9, p= 0.040; interac-
tion: F1,17= 0.1, p= 0.805).

Second, we tested whether the premature response preparation
observed under ketamine was more prominent in trials ending
with a validation of the initial decision (Fig. 8c). As predicted
(Supplementary Fig. 10b), these trials were associated with
significant response activity well before the “go” signal under
ketamine (from 1830 ms before response execution), but only

after the “go” signal under placebo (from 390 ms before response
execution). Response activity was significantly stronger under
ketamine than placebo in a large time window surrounding the
“go” signal (peak t17= 3.5, cluster-corrected p= 0.012). By
contrast, trials where participants opted out from their decisions
did not show significant response activity before the “go” signal in
either condition. To test the timings of these effects, we estimated
the onset of the rise in response activity rise in each condition
(Fig. 8d, see “Methods”). This analysis supported the premature
rise of response activity under ketamine in trials ending with a
validation of the initial decision (interaction: jackknifed
F1,17= 6.4, p= 0.022; validation: jackknifed t17= 2.7, p= 0.015;
opt-out: jackknifed t17=−0.4, p= 0.681).

Our proposed model predicts that premature commitments
provide effective compensation for the elevated uncertainty
triggered by ketamine at a “fast” time scale within each trial,
but does not make specific predictions regarding the temporal
unfolding of the different effects of ketamine at a “slow” time
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scale across trials in the experiment. To assess whether the
different effects of ketamine are sustained across time, we
computed them separately for the first and second halves of the
experiment. All reported effects were sustained across time. In
terms of behavior, the effect of ketamine on opt-out rate (Fig. 1d)
was sustained across the two halves of the experiment (main
effect of ketamine: F1,17= 18.3, p < 0.001; interaction with time:
F1,17= 0.4, p= 0.511). Similarly, the effect of ketamine on
inference noise (Fig. 3c) was sustained across time in the
experiment (main effect of ketamine: F1,17= 10.5, p= 0.005;
interaction with time: F1,17= 0.7, p= 0.428). In the EEG data, the
imbalanced coding of evidence (Fig. 5b) observed under ketamine
was also sustained across time (main effect of stimulus
consistency on coding precision: F1,17= 24.8, p < 0.001; interac-
tion with time: F1,17 < 0.1, p= 0.993). Similarly, the premature
response preparation activity (Fig. 6b) observed under ketamine
was significant in both halves of the experiment (1st half:
t17= 2.3, p= 0.033; 2nd half: t17= 3.1, p= 0.006). No such
activity was detectable under placebo in either half (1st half:

t17= 1.0, p= 0.343; 2nd half: t17= 0.3, p= 0.779). This effect of
ketamine on response preparation was also sustained across time
(main effect of ketamine: F1,17= 8.3, p= 0.010; interaction with
time: F1,17 < 0.1, p= 0.921).

Discussion
Theoretical work has conferred a central role to NMDA receptors
in the computational accuracy of neural circuits implementing
cognitive inference. Here, by administering sub-anesthetic infu-
sions of ketamine to healthy volunteers engaged in a cognitive
task requiring the accumulation of multiple pieces of evidence, we
provide direct experimental support for a causal effect of human
NMDA receptor hypofunction on cognitive inference. Ketamine
produced a specific pattern of neurocognitive alterations, con-
sistent with a premature commitment to inaccurate decisions. In
contrast to existing accounts, we propose that this effect aims at
resolving the abnormal uncertainty triggered by NMDA receptor
hypofunction.
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Our experimental protocol was designed to measure the pre-
cision of inference and estimate the effect of NMDA receptor
hypofunction on this cognitive variable. First, the testing of the
same volunteers under ketamine and placebo increased our ability
to detect differences between conditions by controlling for indi-
vidual differences. Second, our cue combination task and vali-
dated model8 allowed dissociating inference errors from sensory
noise and selection errors. Instead of measuring decision uncer-
tainty using confidence reports—which could be heavily biased by
the dissociative effects of ketamine visible in ratings on psychia-
tric symptom scales—we relied on the titrated comparison of
decision uncertainty with a lottery of known probability of suc-
cess. Together, these distinctive features of our experimental
protocol revealed that ketamine triggers a selective increase in
inference errors and an elevated decision uncertainty.

Theoretical11,12 and empirically motivated28,29 models describe
the impact of NMDA receptor hypofunction on associative,
context-dependent processes required for evidence accumulation
and accurate decisions. In agreement with these views, we found
that ketamine impaired the neural coding of stimulus evidence at
frontal and parietal channels at 300 ms following stimulus onset.
This impairment indicates that NMDA receptor hypofunction
affects the estimation of the momentary evidence provided by
each stimulus as a function of category axes which varied ran-
domly across trials—a flexible, context-dependent process known
to be supported by neural circuits in parietal and prefrontal
cortices30. Importantly, this impaired estimation of momentary
evidence occurs upstream from the integration of momentary
evidence over time—the second process constitutive of cognitive
inference8.

The lack of ketamine effect on orientation coding supports the
idea that NMDA receptor hypofunction impairs cognitive infer-
ence rather than all aspects of stimulus processing in an undif-
ferentiated fashion. Indeed, orientation coding at occipital
channels showed the same strength and latency under ketamine
and placebo, and was associated with the same, well-known
“repetition suppression” effects described in the literature31. The
selectivity of observed ketamine effects indicates that the drug—
which triggered “dissociative” effects on psychiatric symptom
scales—did not merely distract participants from the task.
Nevertheless, the lack of sensory effect of ketamine in our task
does not imply that ketamine does not produce any sensory
deficit in other contexts. Indeed, our task is based on visual sti-
muli with little to no sensory uncertainty (highly contrasted,
without external noise nor temporal masking) and thus sets
cognitive inference—i.e., the estimation and integration of evi-
dence provided by successive stimuli—rather than sensory pro-
cessing as the main cognitive bottleneck on task performance.
Further research should employ tasks triggering high sensory
uncertainty (e.g., random-dot motion stimuli) to determine
whether ketamine can also produce sensory effects beyond its
selective effects on cognitive inference observed in our task.

NMDA receptors have been proposed to enable balanced
computations in associative cortical circuits, be it through their
slow excitation of downstream neurons32 or other distinguishing
features (e.g., their nonlinear gain, their voltage-dependent
blockade or their calcium permeability). Indeed, selective inacti-
vation of these receptors results in early decisions that are based
on few pieces of evidence11. In our task, we found that human
NMDA receptor hypofunction does not impair cognitive infer-
ence in an unspecific fashion, but produces an imbalanced coding
of stimulus evidence. Indeed, under ketamine, participants
appeared to assign stronger weight to evidence for one category
than the other, thereby increasing its likelihood to be selected at
the end of the trial. This imbalanced weighting of evidence,
particularly when associated with premature decisions, is seen as

a signature of “confirmation bias” and “circular inference”, two
mechanisms described in schizophrenia33,34. A similar bias has
also been reported in the general population, but only after an
initial response35–38. Here, our participants showed a similar
effect under ketamine before any overt response has been made.

Subthreshold response preparation has been repeatedly
reported during evidence accumulation in several sensorimotor
regions, from the macaque parietal cortex39,40 to the human
motor cortex24,25. However, this effect is observed either in “free-
response” conditions, or in conditions using a fixed number of
stimuli where the “go” signal can be easily anticipated. Under
ketamine, our participants showed a similar anticipatory effect in
a “cued-response” condition using a variable number of stimuli—
i.e., where the “go” signal cannot be anticipated. This early
response preparation is maladaptive in such conditions, since the
evidence presented late in a trial can sway the decision toward the
other category. We propose that the co-occurrence of these two
effects of ketamine—imbalanced weighting of evidence and pre-
mature response preparation—arises from premature commit-
ments to uncertain beliefs about the category of the stimulus
sequence in the middle of some trials.

In simulations, premature commitments alter the shape of
psychophysical kernels by decreasing the weights of stimuli pre-
sented late in each sequence—i.e., after premature commitments
have occurred (Supplementary Fig. 10c). This predicted effect
stands in apparent contradiction with participants’ psychophy-
sical kernels under ketamine, which did not show such an effect
(Supplementary Fig. 2b). However, the shape of psychophysical
kernels does not only depend on premature commitments, but
also on the ability to accumulate evidence over time without leak
(a measure of working memory in our task). Therefore, the
similar shapes of participants’ psychophysical kernels under
ketamine and placebo—despite the presence of premature com-
mitments under ketamine—suggest that ketamine may impair
working memory (as described in previous work41) and therefore
increase the leak in evidence accumulation (Supplementary
Fig. 10d). Future research should further examine the relation
between these two cognitive effects of ketamine.

Premature commitments—also described as “jumping to con-
clusions”—are often seen as a signature of overconfidence. Our
findings are incompatible with this view, since our participants
showed elevated decision uncertainty under ketamine. However,
it does not mean that premature commitments do not affect
decision uncertainty. Indeed, premature commitments provide a
form of effective compensation for the increased decision
uncertainty over the course of a single inference process (a single
trial in our task), by ignoring the evidence which conflicts with
the pre-committed decision. As predicted by simulations, we
show that the neural signatures of premature commitment were
more pronounced in trials ending with decision validation than
opt-out.

This effective compensation predicts a progressive transition
from underconfidence when presented with few pieces of evi-
dence—as it is the case in our task—to overconfidence when
presented with many pieces of evidence over longer periods of
time—as it is typically the case outside the laboratory. Because
premature commitments increase the amount of accumulated
evidence by filtering out conflicting evidence (Supplementary
Fig. 11a), they lead progressively to overconfidence and decreased
confidence sensitivity to objective decision accuracy (Supple-
mentary Fig. 11b). In the general population, such “over-com-
pensatory” mechanisms to uncertainty have been contemplated at
longer time scales to explain the hardening of attitudes across
different areas of psychology, including religion42, attitudes
toward capital punishment43 and belief in conspiracy theories44.
Even at short time scales, lacking control (a major source of
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cognitive uncertainty) triggers a wide range of illusory percepts—
from seeing images in random noise to forming illusory corre-
lations in stock market fluctuations45. Here, in line with these
different observations, we formally characterize how NMDA
receptor hypofunction triggers a premature commitment to
inaccurate decisions when confronted with high levels of uncer-
tainty. Note, however, that our computational model remains
agnostic about the nature of the relation between these two effects
of ketamine. Also, the fact that both effects were sustained across
the two halves of the experiment does not rule out a possible
delay between their onsets at a different time scale.

Furthermore, low-dose infusions of ketamine have been pro-
posed as a pharmacological model of symptoms observed at early
stages of psychosis16,28,29 —a stage where patients report elevated
uncertainty rather than the overconfidence characteristic of later
stages of the disease. This early stage of the disease is extremely
difficult to study because patients are typically not receiving
health care before developing a full-blown psychosis. The two
effects of ketamine observed in our task could potentially
reconcile these two stages in a unified account: an initial state of
high uncertainty46 and premature commitments47 which pro-
gressively results in overconfidence and a weaker relation between
confidence and decision accuracy—both of which being char-
acteristic of psychosis48. Confirming this speculative hypothesis
will require testing patients diagnosed with schizophrenia in our
task at different stages of their illness. Such clinical investigation
could clarify whether “jumping to conclusions” (a form of pre-
mature commitments) aims at resolving the abnormal uncer-
tainty experienced by patients at early stages of their illness. It
may also ultimately help determine whether treatment at early
stages of psychosis should aim at increasing tolerance to
uncertainty49, through psychotherapeutic50 or pharmacological51

approaches.

Methods
Participants. A total of 24 adult participants were recruited through public
advertisement in the Paris area. The recruited participants were between 18 and 39
years of age, right-handed, reported no history of neurological or psychiatric dis-
ease, and no family history of psychotic disorders. Participants reported no
addiction to psychoactive drugs, nor history of psychotropic medication. Partici-
pants had normal or corrected-to-normal vision, no history of cardiac disease, and
blood pressure under 140/90 mmHg. Female participants were not pregnant nor
breastfeeding. Participants provided written informed consent and received a flat
€250 in compensation for their participation in the study. The study received
ethical approval from relevant authorities: the Agence Nationale de Sécurité du
Médicament et des Produits de Santé and the Comité de Protection des Personnes
Ile-de-France III (ID RCB: 2013-002056-33). The study was registered under
reference NCT02235012.

The first three participants were used to pilot the different aspects of the study
(including parameters of the pharmacological protocol and those of the cue
combination task). The EEG data of a fourth participant were lost, and two
additional participants did not complete the cue combination task under ketamine
as a result of adverse effects. The first participant had a vasovagal episode with
hypotension, vomiting, but no loss of consciousness. The episode ended
spontaneously a few minutes after the infusion was stopped and the participant was
placed in a supine position with the legs elevated. The second participant
experienced nausea. The symptoms likewise stopped spontaneously shortly after
the infusion was stopped and did not require additional treatments. N= 18
participants were thus included in all analyses (7 females, age: 26.8 ± 5.5 years).
This sample size is similar to those generally employed for comparable studies16.

Pharmacological protocol. The study relies on a double-blind, placebo-controlled,
randomized crossover protocol. Each participant performed the cue combination
task described below twice, once under ketamine and once under placebo (sodium
chloride), during two experimental sessions taking place on separate days. The
allocation to receive ketamine (or placebo) on the first session was randomized
using a randomization block size of two participants. Both participants and
experimenters were blind to this allocation. For the ketamine session, a preparation
of racemic ketamine 0.1% was prepared using 2 ml of a 5 ml phial of injectable
Panpharma ketamine 250 mg/5 ml (containing 288.4 mg of ketamine chlorhydrate,
corresponding to 250 mg of base ketamine), which was added to a 100 ml bag of
saline solution (Macropharma sodium chloride 0.9%), of which 2 ml had been

extracted. For the placebo session, the 100 ml bag of saline solution was used with
no further preparation. The ketamine and placebo bags were indistinguishable.

Ketamine (or saline) was administered intravenously using a three-stage
infusion protocol: a 10 min bolus stage (0.023 mg/kg/min), followed by a 20 min
stabilization stage (0.0096 mg/kg/min) and a third open-ended stage (0.0048 mg/
kg/min) until task completion (~60 min). The pump used was a programmable
Volumat Agilia pump (Fresenius Kabi France SAS), programmed with the above
protocol and which switched sequentially from one stage to the next automatically.
This protocol was inspired from previously published research52, and adapted after
performing simulations using the pharmacokinetic parameters of a three-
compartment model53 to achieve stable plasma concentration of 150 ng/ml of
ketamine during task execution. This target plasma concentration was chosen to
achieve subtle cognitive alterations, while avoiding the emergence of additional
symptoms that would further distract participants from the task. This low target
plasma concentration is also known to maximize tolerability, with few adverse
effects54.

Clinical measures. Participants underwent psychiatric symptom measurements
during each experimental session at three time points: (1) before infusion start
(t= 0), (2) before the start of the cue combination task (t= 30 min), and (3) at the
end of the cue combination task (t ≈ 90 min), right before infusion stop. The
measurements consisted of the 24-item Brief Psychiatric Rating Scale55 (BPRS)
which is designed to assess general psychiatric dimensions, and the 23-item
Clinician-Administered Dissociative States Scale56 (CADSS) which is designed to
assess “dissociative” symptoms that are expected under ketamine. These scales have
been extensively validated, standardized, and are frequently used.

Participants also underwent physical measurements (blood pressure, heart rate,
blood oxygen saturation) before infusion start (t= 0) and at the end of each
experimental block of the cue combination task (every 15–20 min). The level and
stability of ketamine plasma concentration was controlled by two blood samples
taken before the start of the cue combination task (t= 30 min), and at the end of
the cue combination task (t ≈ 90 min). Blood samples were immediately
centrifugated for 10 min at 1700 × g and 4 °C using a Multifuge 3 S centrifuge
(Fisher Scientific SAS). The resulting plasma was frozen at −20 °C and sent to the
pharmacology lab to be analyzed. Ketamine plasma concentration was estimated
using a Waters 600 high-performance liquid chromatography system and a Waters
2996 photodiode array detector (Waters Corporation).

Cue combination task. The task consisted of a variant of the “weather prediction”
task8 in which participants are asked to identify the generative category (deck) of a
sequence of oriented stimuli (draw of cards) among two alternatives depicted by
two colors (orange and blue) which differed in terms of their generative dis-
tributions over orientation. Stimuli corresponded to oriented black bars presented
in the foreground of a colored disc displaying an angular gradient between orange
and blue (through gray)—the two cardinal colors being spaced by 90 degrees and
varying pseudo-randomly along the circle across trials. The colored disc was pre-
sented 800 ± 80ms prior to the onset of the first stimulus, and remained present on
the screen until the end of the stimulus sequence. On each trial, a sequence of 4, 8
or 12 stimuli was drawn from a von Mises probability distribution centered either
on the orientation indicated by orange or the orientation indicated by blue, with a
coherence κ updated twice during each experimental block (i.e., every 36 trials) to
achieve a target accuracy of 75% using a Bayesian psychophysical titration pro-
cedure. The titration procedure relied on the noisy inference model validated in
this task8 to estimate the coherence κ required to reach the target accuracy. The
estimate for the spread of inference noise was initialized to the mean value
observed in previous datasets (σ = 0.5), and updated every 36 trials using max-
imum likelihood estimation. This titration procedure was used to match decision
accuracy to the mean probability of success (0.75) of the lotteries presented at the
end of each trial.

The number of stimuli in each sequence was sampled pseudo-randomly and
uniformly across trials. Each sequence was presented at an average rate of 2.5 Hz,
using an inter-stimulus interval of 400 ± 40 ms. The last stimulus of each sequence
was followed by a change in the fixation point (“go” signal) which probed the
participant for a response, by pressing either of two buttons of a Cedrus response
pad (Cedrus Corporation) with their left or right index finger—using a response
mapping (e.g., left for orange, right for blue) fully counterbalanced between
participants. Participants had a maximum of 2 s to provide their response. No
feedback was provided about the true generative category of the sequence of
stimuli, except during the training block at the beginning of each experimental
session, where pairs of tones with increasing frequencies (440–880 Hz) followed
correct responses, pairs of tones with decreasing frequencies (880–440 Hz) followed
errors, and two low-frequency tones (220–220 Hz) followed a timeout. Visual
stimuli were presented in front of a gray background using the Psychtoolbox-3
toolbox57–59 and additional custom scripts written for MATLAB (Mathworks). The
display CRT monitor had a resolution of 1024 by 768 pixels and a refresh rate of
75 Hz. Participants viewed the stimuli while seating at a distance of ~60 cm from
the screen in a normally lit room.

Following a short (0.5 s) or long (4.0 s) delay after each provided response, a
lottery depicted by a grayscale pie chart was presented to participants. The darker
area indicated the probability of success of the lottery (0.6, 0.7, 0.8 or 0.9), which
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varied unpredictably and uniformly across trials. Participants were asked to decide
whether they wanted to be rewarded on the current trial based either on the
accuracy of their previous response (validation) or on the outcome of the presented
lottery (opt out). Participants validated their previous response by pressing again
the same button, or opted out from their previous response by pressing the other
button. Participants had a maximum of 2 s to provide their validation or opt-out
response. The mean probability of success of the lottery (0.75) was chosen to match
the titrated accuracy of participants’ responses, such that participants could not
rely on a “default” strategy. Instead, participants were explicitly encouraged during
training to compare the probability of success of the presented lotteries with the
perceived accuracy of their decisions to decide whether to validate or opt out.

Each experimental session consisted of six blocks of 72 trials each (each lasting
~10 min): a training block performed before infusion start, and five test blocks
performed from t= 30 min after infusion start. Participants took short rest periods
between each block, during which physical measurements (blood pressure, heart
rate, blood oxygen saturation) were obtained. The initial training block was used to
achieve approximate convergence for the Bayesian psychophysical titration
procedure described above.

Behavioral modeling of decision errors. We used a validated model of decision-
making to decompose the sources of human decision errors in this task across
sensory, inference and response selection stages of processing8. In a given trial,
after observing n stimuli θ1; ¼ ; θn; the Bayes-optimal decision maker accumulates
stimulus-wise log-likelihoods ratios lk ¼ log p θkjA

� �
=p θkjB
� �� �

to form the log-
posterior belief L � p Ajθ1:n

� � ¼ ∑n
k¼1lk , and chooses the category (A or B) based

on the sign of L (A if L> 0, B otherwise). The Bayes-optimal choice is therefore
deterministically related to the stimulus sequence. Because stimulus sequences are
drawn from von Mises probability distributions centered on orthogonal orienta-
tions with coherence κ, the log-likelihood ratios lk associated with orientation θk
for a categorization axis θ� can be written as:

‘k ¼ 2 κ sinð2ðθk � θ*ÞÞ ð1Þ
Sensory errors were modeled by introducing noisy orientation percepts

θ̂k ¼ θk þ εk , where εk � Nð0; σ2senÞ are zero-mean Gaussian variables,
independent across stimuli, with sensory noise variance σ2sen. Inference errors were
modeled by introducing variability at the inference stage through noisy log-
likelihood ratios l̂k ¼ lk þ εk , where εk�N 0; σ2inf

� �
are zero-mean Gaussian

variables, independent across stimuli, with inference noise variance σ2inf . Response
selection errors were modeled by sampling each response r from the log-posterior
belief L through a “softmax” selection policy, p r ¼ Ajθ1:n

� � / exp βL� �
, where β is

the “inverse temperature” of the policy (β ¼ 0, random choices; β ¼ 1, posterior
sampling; β ! 1, greedy choices). This response selection policy is
indistinguishable from adding Gaussian noise to the log-posterior belief8.

Model fitting was performed through maximum likelihood estimation using the
“interior point” algorithm of the fmincon routine in MATLAB (version R2019b).
Bayesian model selection (both fixed-effects and random-effects) was based on
approximating the model evidence by the Bayesian Information Criterion. In all
model fits, the concentration parameter κ was used as scaling parameter by setting
it to its true, generative value (κ ¼ 0:5). When characterizing the sources of errors
in each condition, we relied on a factorized, “family-wise” approach60,61 which
considers all possible combinations of the three noise sources described above.
When identifying the noise source which is most likely to increase under ketamine,
we compared three models in which only a single source of noise was allowed to
vary between the two conditions (the other two being constant).

We further implemented a “model recovery” procedure to test the robustness of
our model fitting and selection procedures. When characterizing the sources of
errors in each condition, the recovery procedure consists in simulating our three
candidate models of interest (model 1: sensory errors, model 2: inference errors,
model 3: response selection errors), and applying our model fitting and selection
procedures to obtained simulations to test whether we can “recover” accurately the
simulated model. When identifying the noise source which is most likely to
increase under ketamine, the three candidate models now differ in the single noise
source allowed to vary between the two conditions (model 1: sensory errors; model
2: inference errors; model 3: response selection errors). For model simulations, we
used as parameter values the posterior means obtained by fitting the corresponding
model to each participant. This recovery procedure provides an external validation
for the models being tested: their sources of errors are recoverable from behavior19.

Behavioral modeling of opt-out decisions. We modeled opt-out decisions by a
logistic regression model with two parametric trial-wise regressors: (1) the expected
accuracy p̂cor of the decision provided by the participant regarding the category of
the stimulus sequence, and (2) the probability of success plot of the presented
lottery. The expected accuracy of each decision was computed by conditioning the
predicted log-posterior L of the best-fitting noisy inference model to the decision
provided by the participant—i.e., by computing the mean of a truncated normal
distribution whose mean and variance is given by the statistics of the log-posterior
L on this trial. The mean expected accuracy across trials was adjusted to the mean
lottery probability (0.75), as instructed explicitly to the participants. Both regressors
were entered as log-odds ratios (l̂cor � logit p̂cor

� �
for the expected accuracy and

llot � logit plot
� �

for the lottery probability) in the logistic regression:

pðopt outÞ ¼ 1

1þ expðβ0 þ β1 ‘̂cor � β2 ‘lotÞ
ð2Þ

where the three fitted parameters are: (1) the opt-out criterion β0 (a lower criterion
means a higher probability of opting out), (2) the opt-out sensitivity to the expected
accuracy β1 (a higher expected accuracy predicts a lower probability of opting out),
and (3) the opt-out sensitivity to the lottery probability β2 (a higher lottery
probability predicts a higher probability of opting out).

Simulations of premature commitments. We performed simulations of pre-
mature commitments to assess their impact on the signatures of cognitive inference
identified in behavior and EEG data. Premature commitments were modeled as a
selective perturbation of the noisy inference process which best describes partici-
pants’ behavior across conditions. The spread of inference noise was set to its best
fitting value under placebo, and only the probability of premature commitments
was varied across simulations. Premature commitments could occur after each
stimulus, starting from the 4th stimulus in each sequence (the smallest sequence
length used in the experiment), following a flat hazard rate p. The occurrence of a
premature commitment after stimulus k was associated with the covert selection of
a category based on the sign of the log-posterior belief Lk at the time of com-
mitment, and followed by the selective integration of evidence consistent with the
selected category and the discarding of evidence conflicting with the selected
category.

The effect of occasional premature commitments on inference noise was
quantified by fitting the noisy inference model to simulated responses. Coding
precision in the model was estimated by correlating the noisy representations of
stimulus evidence computed by the model l̂k

�� �� with the true (objective) stimulus
evidence lk . This correlation was corrupted by additive “observation” noise
following a zero-mean Gaussian distribution, to yield coding precision estimates of
the same magnitude as the ones obtained when decoding stimulus evidence from
EEG data. Belief strength in the model was quantified as the magnitude of the log-
posterior belief after each stimulus Lk

�� ��.

Electroencephalography. EEG data were recorded using a 64-channel BioSemi
ActiveTwo system (BioSemi, Amsterdam, The Netherlands) at a sampling fre-
quency of 1024 Hz. The 64 scalp electrodes were positioned according to the 10/
20 system. After recording, the raw EEG data were down-sampled to 512 Hz, high-
pass filtered at 1 Hz using a 4th-order Butterworth filter to remove slow (sweat-
induced) drifts, and referenced to the average of all electrodes. EEG data were
epoched around each trial, from 0.5 s before the onset of the colored disc indicating
the mean orientations of the two categories for the current trials, and until 0.5 s
after the validation or opt-out response provided by the participant. Individual
epochs were inspected visually to remove epochs containing large jumps, and to
identify bad electrodes whose activities were reconstructed using spherical inter-
polation using neighboring electrodes. Remaining stereotyped artifacts (e.g., eye
blinks) were then removed by decomposing the EEG data into independent sources
of brain activity using Independent Component Analysis (ICA), and pruning eye
blink components from the EEG data manually for each participant. These pre-
processing steps were performed using the EEGLAB62 and FieldTrip63 toolboxes
for MATLAB, and additional custom-written scripts.

Multivariate pattern analyses of EEG data. We applied multivariate pattern
analyses to stimulus-locked EEG epochs (from 0.2 s before to 0.8 following sti-
mulus onset) to estimate the neural patterns associated with two characteristics of
each stimulus k, where k corresponds to the position of the stimulus in the current
sequence: (1) its orientation θk described by cos 2θk

� �
and sin 2θk

� �
, and (2) the

strength of the evidence provided by the stimulus, described by its absolute log-
likelihood ratio lk

�� ��. Importantly, owing to features of our experimental task (in
particular the changes in category means across trials), these four stimulus char-
acteristics showed no significant correlation with each other for a given stimulus k.

The EEG data features used for multivariate pattern analyses corresponded to
the analytical representations (decompositions into real and imaginary parts) of
low-pass filtered EEG signals, computed using the Hilbert transform. The low-pass
frequency cutoff was optimized separately for the decoding of stimulus orientation
(16 Hz) and stimulus evidence (8 Hz) across conditions. The decomposition of
EEG data into real and imaginary parts allowed the decoder to use the temporal
basis of each EEG signal instead of its waveform. This transform doubled the
number of data features provided to the linear decoder (i.e., 128 data features for 64
electrodes).

Multivariate pattern analyses relied on an inverted linear encoding model. First,
we solved the following linear encoding equation: D1 ¼ WencC1, where C1 is the
design matrix on the training set (m regressors × n1 training epochs), D1 is the EEG
data matrix at time t following sample onset on the training set (128 data
features × n1 training epochs), and Wenc is the encoding weight matrix (128 data
features ×m regressors) to be estimated. Note that m ¼ 2 for the decoding of
stimulus orientation (using cos 2θ1:n

� �
and sin 2θ1:n

� �
as regressors), whereasm ¼ 1

for the decoding of stimulus evidence (using l1:n
�� �� as single regressor). This

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27876-3 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:338 | https://doi.org/10.1038/s41467-021-27876-3 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


estimation was obtained based on ordinary least squares:

Wenc ¼ D1C
T
1 ðC1C

T
1 Þ

�1 ð3Þ
where XT is the transpose of X and X�1 is the pseudoinverse of X. We then
inverted the encoding weight matrix Wenc to obtain neural predictions Ĉ2 for the
regressors on the test set (k regressors × n2 test epochs) from the EEG data matrix
D2 at the same time t following sample onset on the test set (128 data features × n2
test epochs): Ĉ2 ¼ WdecD2, where Wdec is the decoding weight matrix (k
regressors × 128 data features) obtained using:

Wdec ¼ ðWT
encWencÞ

�1
WT

enc ð4Þ
After applying this procedure for each cross-validation fold (N= 10 interleaved

folds for all analyses), we computed the linear correlation coefficient between neural
predictions Ĉ2 and ground-truth values C2 of the stimulus characteristic. The coding
precision metric reported in the main text corresponds to the Fisher transform of the
correlation coefficient, which is approximately normally distributed, such that we
could compute standard parametric statistics at the group level.

The multivariate pattern analyses described above were conducted for each
participant and each condition. At the group level, we used standard parametric
tests (paired t tests, repeated-measures ANOVAs) to assess the statistical
significance of observed differences in coding precision between conditions across
tested participants. Neural coding latency was computed for each stimulus
characteristic and each condition by estimating the peak of coding precision using
a jackknifing (leave-one-out) procedure64. The type 1 error rate arising from
multiple comparisons was controlled for using non-parametric cluster-level
statistics computed across time points65. All findings reported in the main text
were robust to changes in the method used for computing EEG patterns (e.g., by
applying regularized ridge-regression decoding instead of the inverted encoding
model described above) and to the number of cross-validation folds. When
computing coding precision across a time window, we averaged neural predictions
Ĉ2;t across the time window t 2 t1; t2

� �
prior to computing the linear correlation

coefficient with ground-truth values C2.

Spectral decomposition and analyses of EEG data. The spectral power of band-
limited EEG oscillations between 8 and 32 Hz was estimated using the “multi-
tapering” time-frequency transform implemented in FieldTrip63 (Slepian tapers, 8
cycles and 3 tapers per window, corresponding to a frequency smoothing of 25%),
in a time window surrounding each response regarding the category of the stimulus
sequence (from 2.5 s before until 0.5 s following response execution).

We then trained a linear classifier on EEG power estimated at response
execution for each frequency f to predict the response (left- or right-handed)
provided the participant, using the cross-validation procedure described above. We
could then project EEG power at frequency f for each trial from the test set (not
used for training the linear classifier) on the spatial component defined by the
difference between left- and right-handed responses at response execution, across
the whole time window of interest. This signal projection (named “response
activity”) was signed in direction of the provided response, such that a positive
projection predicts (correctly) the response provided by the participant, and a
negative projection predicts (incorrectly) the other response.

We estimated the onset of response activity rise as the last zero-crossing of the
temporal derivative of response activity before response execution in each
condition. We relied on a jackknifing (leave-one-out) approach64 to obtain the
group-level means and s.e.m. of these estimates and their statistical significance,
computed after low-pass filtering time courses of spectral power in the alpha
(10 Hz) and beta (20 Hz) bands at 2 Hz using a 6th-order Butterworth filter.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Individual anonymized behavioral and EEG datasets have not been made publicly
accessible as participants did not provide explicit written consent regarding the posting of
this data on public repositories. This data is available from the corresponding author
upon request. The aggregated data displayed in the figures are provided as Source Data
with this paper. Source data are provided with this paper.

Code availability
The core functions and scripts used for running the experiment, analyzing the behavior
and EEG data, fitting the computational model of noisy inference and confidence to
behavior in the cue combination task, and simulating the premature commitment model
of ketamine effects, are publicly accessible at Zenodo66 (https://doi.org/10.5281/
zenodo.5752796).
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