P. Riquelme, E. Drapeau, and F. Doetsch, Brain micro-ecologies: neural stem cell niches in the adult mammalian brain, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.26, issue.2-4, pp.123-160, 2008.
DOI : 10.1159/000082136

D. Ma, M. Bonaguidi, M. G. Song, and H. , Adult neural stem cells in the mammalian central nervous system, Cell Research, vol.63, issue.6, pp.672-82, 2009.
DOI : 10.1016/S0092-8674(02)00862-0

C. Gross, Neurogenesis in the adult brain: death of a dogma, Nature Reviews Neuroscience, vol.1, issue.1, pp.67-73, 2000.
DOI : 10.1038/35036235

F. Doetsch, The glial identity of neural stem cells, Nature Neuroscience, vol.6, issue.11, pp.1127-1161, 2003.
DOI : 10.1038/nn1144

H. Nam, K. Lee, D. Nam, and K. Joo, Adult human neural stem cell therapeutics: Current developmental status and prospect, World Journal of Stem Cells, vol.7, issue.1, pp.126-162, 2015.
DOI : 10.4252/wjsc.v7.i1.126

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300923/pdf

P. Thored, A. Arvidsson, E. Cacci, H. Ahlenius, T. Kallur et al., Persistent Production of Neurons from Adult Brain Stem Cells During Recovery after Stroke, Stem Cells, vol.35, issue.3, pp.739-786, 2006.
DOI : 10.1172/JCI200317977

URL : http://onlinelibrary.wiley.com/doi/10.1634/stemcells.2005-0281/pdf

O. Lindvall and Z. Kokaia, Neurogenesis following Stroke Affecting the Adult Brain, Cold Spring Harbor Perspectives in Biology, vol.7, issue.11, p.19034, 2015.
DOI : 10.1101/cshperspect.a019034

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632663/pdf

R. Zhang, Z. Zhang, L. Wang, Y. Wang, A. Gousev et al., Activated Neural Stem Cells Contribute to Stroke-Induced Neurogenesis and Neuroblast Migration toward the Infarct Boundary in Adult Rats, Journal of Cerebral Blood Flow & Metabolism, vol.766, issue.4, pp.441-449, 2004.
DOI : 10.1016/S0006-8993(97)00580-5

A. Osman, M. Porritt, M. Nilsson, and H. Kuhn, Long-Term Stimulation of Neural Progenitor Cell Migration After Cortical Ischemia in Mice, Stroke, vol.42, issue.12, pp.3559-65, 2011.
DOI : 10.1161/STROKEAHA.111.627802

A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, Neuronal replacement from endogenous precursors in the adult brain after stroke, Nature Medicine, vol.8, issue.9, pp.963-70, 2002.
DOI : 10.1006/exnr.1995.1085

J. Parent, Z. Vexler, C. Gong, N. Derugin, and D. Ferriero, Rat forebrain neurogenesis and striatal neuron replacement after focal stroke, Annals of Neurology, vol.8, issue.6
DOI : 10.1002/ana.10393

B. Saha, S. Peron, K. Murray, M. Jaber, and A. Gaillard, Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury, Stem Cell Research, vol.11, issue.3, pp.965-77, 2013.
DOI : 10.1016/j.scr.2013.06.006

C. Hicks, L. Stevanato, R. Stroemer, E. Tang, S. Richardson et al., In Vivo and in Vitro Characterization of the Angiogenic Effect of CTX0E03 Human Neural Stem Cells, Cell Transplantation, vol.106, issue.9, pp.1541-52, 2013.
DOI : 10.1172/JCI9369

K. Michelsen, S. Acosta-verdugo, M. Benoit-marand, I. Espuny-camacho, N. Gaspard et al., Area-Specific Reestablishment of Damaged Circuits in the Adult Cerebral Cortex by Cortical Neurons Derived from Mouse Embryonic Stem Cells, Neuron, vol.85, issue.5, pp.982-97, 2015.
DOI : 10.1016/j.neuron.2015.02.001

M. Quittet, O. Touzani, L. Sindji, J. Cayon, F. Fillesoye et al., Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat, Acta Biomaterialia, vol.15, pp.77-88, 2015.
DOI : 10.1016/j.actbio.2014.12.017

URL : https://hal.archives-ouvertes.fr/hal-01577870

H. Braun, A. Günther-kern, K. Reymann, and B. Onteniente, Neuronal differentiation of human iPS-cells in a rat cortical primary culture, Acta Neurobiol Exp, vol.72, pp.219-248, 2012.

M. Moe, M. Varghese, A. Danilov, U. Westerlund, J. Ramm-pettersen et al., Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons, Brain, vol.128, issue.9, pp.2189-99, 2005.
DOI : 10.1093/brain/awh574

URL : https://academic.oup.com/brain/article-pdf/128/9/2189/1044745/awh574.pdf

L. Vaysse, C. Labie, B. Canolle, S. Jozan, A. Béduer et al., Adult human progenitor cells from the temporal lobe: Another source of neuronal cells, Brain Injury, vol.11, issue.13-14, pp.1636-1681, 2012.
DOI : 10.1002/hipo.1045

U. Westerlund, M. Svensson, M. Moe, M. Varghese, B. Gustavsson et al., Endoscopically harvested stem cells: a putative method in future autotransplantation, Neurosurgery, vol.55, pp.779-84, 2005.
DOI : 10.1227/01.neu.0000176402.78462.cd

L. Huang, S. Wong, E. Snyder, M. Hamblin, and J. Lee, Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury, Stem Cell Research & Therapy, vol.5, issue.6, p.129, 2014.
DOI : 10.1172/JCI200319212

URL : https://stemcellres.biomedcentral.com/track/pdf/10.1186/scrt519?site=stemcellres.biomedcentral.com

K. Jin, X. Mao, L. Xie, V. Galvan, B. Lai et al., Transplantation of Human Neural Precursor Cells in Matrigel Scaffolding Improves Outcome from Focal Cerebral Ischemia after Delayed Postischemic Treatment in Rats, Journal of Cerebral Blood Flow & Metabolism, vol.1123, issue.3, pp.534-578, 2010.
DOI : 10.1227/01.NEU.0000166682.50272.BC

J. Guan, Z. Zhu, R. Zhao, Z. Xiao, C. Wu et al., Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats, Biomaterials, vol.34, issue.24, pp.5937-5983, 2013.
DOI : 10.1016/j.biomaterials.2013.04.047

E. André, C. Passirani, B. Seijo, A. Sanchez, and C. Montero-menei, Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease, Biomaterials, vol.83, pp.347-62, 2016.
DOI : 10.1016/j.biomaterials.2015.12.008

H. Olstorn, M. Varghese, W. Murrell, M. Moe, and I. Langmoen, Predifferentiated Brain-Derived Adult Human Progenitor Cells Migrate Toward Ischemia After Transplantation to the Adult Rat Brain, Neurosurgery, vol.68, issue.1, pp.213-235, 2011.
DOI : 10.1227/NEU.0b013e3181fd2c11

T. Nakaji-hirabayashi, K. Kato, and H. Iwata, Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier, Biomaterials, vol.30, issue.27, pp.4581-4590, 2009.
DOI : 10.1016/j.biomaterials.2009.05.009

P. Elias and M. Spector, Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury, Journal of Neuroscience Methods, vol.209, issue.1, pp.199-211, 2012.
DOI : 10.1016/j.jneumeth.2012.06.003

L. Vaysse, F. Conchou, B. Demain, C. Davoust, B. Plas et al., Strength and fine dexterity recovery profiles after a primary motor cortex insult and effect of a neuronal cell graft., Behavioral Neuroscience, vol.129, issue.4, p.423, 2015.
DOI : 10.1037/bne0000067

A. Béduer, C. Vieu, F. Arnauduc, J. Sol, I. Loubinoux et al., Engineering of adult human neural stem cells differentiation through surface micropatterning, Biomaterials, vol.33, issue.2, pp.504-518, 2012.
DOI : 10.1016/j.biomaterials.2011.09.073

L. Vaysse, A. Beduer, J. Sol, C. Vieu, and I. Loubinoux, Micropatterned bioimplant with guided neuronal cells to promote tissue reconstruction and improve functional recovery after primary motor cortex insult, Biomaterials, vol.58, pp.46-53, 2015.
DOI : 10.1016/j.biomaterials.2015.04.019

A. Béduer, L. Vaysse, E. Flahaut, F. Seichepine, I. Loubinoux et al., Multi-scale engineering for neuronal cell growth and differentiation, Microelectronic Engineering, vol.88, issue.8, pp.1668-71, 2011.
DOI : 10.1016/j.mee.2010.12.049

C. Hassler, T. Boretius, and T. Stieglitz, Polymers for neural implants, Journal of Polymer Science Part B: Polymer Physics, vol.5, issue.10, pp.18-33, 2011.
DOI : 10.1287/orsc.5.3.344

URL : http://onlinelibrary.wiley.com/doi/10.1002/polb.22169/pdf

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 1998.

R. Baayen, D. Davidson, and D. Bates, Mixed-effects modeling with crossed random effects for subjects and items, Journal of Memory and Language, vol.59, issue.4, pp.390-412, 2008.
DOI : 10.1016/j.jml.2007.12.005

URL : http://www.mpi.nl/world/persons/private/baayen/publications/baayenDavidsonBates.pdf

J. Pinheiro and D. Bates, Theory and Computational Methods for Linear Mixed-Effects Models, pp.3-56, 2000.
DOI : 10.1007/978-1-4419-0318-1_2

D. Lu, A. Mahmood, C. Qu, X. Hong, D. Kaplan et al., COLLAGEN SCAFFOLDS POPULATED WITH HUMAN MARROW STROMAL CELLS REDUCE LESION VOLUME AND IMPROVE FUNCTIONAL OUTCOME AFTER TRAUMATIC BRAIN INJURY, Neurosurgery, vol.61, issue.3, p.596, 2007.
DOI : 10.1227/01.NEU.0000290908.38438.B2

C. Qu, Y. Xiong, A. Mahmood, D. Kaplan, A. Goussev et al., Treatment of traumatic brain injury in mice with bone marrow stromal cell???impregnated collagen scaffolds, Journal of Neurosurgery, vol.111, issue.4, pp.658-65, 2009.
DOI : 10.3171/2009.4.JNS081681

C. Wong-po-foo, J. Lee, W. Mulyasasmita, A. Parisi-amon, and S. Heilshorn, Two-component protein-engineered physical hydrogels for cell encapsulation, Proceedings of the National Academy of Sciences, vol.2, issue.8, pp.22067-72, 2009.
DOI : 10.1016/j.jbiomech.2009.02.012

K. Deguchi, K. Tsuru, T. Hayashi, M. Takaishi, M. Nagahara et al., Implantation of a New Porous Gelatin???Siloxane Hybrid into a Brain Lesion as a Potential Scaffold for Tissue Regeneration, Journal of Cerebral Blood Flow & Metabolism, vol.366, issue.10, pp.1263-73, 2006.
DOI : 10.1016/S0140-6736(05)66879-1

M. Starkey, C. Bleul, B. Zorner, N. Lindau, T. Mueggler et al., Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke, Brain, vol.135, issue.11, pp.3265-81, 2012.
DOI : 10.1093/brain/aws270

URL : https://academic.oup.com/brain/article-pdf/135/11/3265/17347388/aws270.pdf

M. Anderson, J. Burda, Y. Ren, Y. Ao, O. Shea et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature, vol.34, issue.7598, pp.195-200, 2016.
DOI : 10.1523/JNEUROSCI.1860-14.2014

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243141/pdf

J. Burda and M. Sofroniew, Reactive Gliosis and the Multicellular Response to CNS Damage and Disease, Neuron, vol.81, issue.2, pp.229-277, 2014.
DOI : 10.1016/j.neuron.2013.12.034

URL : https://doi.org/10.1016/j.neuron.2013.12.034

V. Menet, M. Prieto, A. Privat, and M. Ribotta, Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes, Proceedings of the National Academy of Sciences, vol.1, issue.2, pp.8999-9004, 2003.
DOI : 10.1038/373

URL : http://www.pnas.org/content/100/15/8999.full.pdf

J. Silver and J. Miller, Regeneration beyond the glial scar, Nature Reviews Neuroscience, vol.5, issue.2, pp.146-56, 2004.
DOI : 10.1038/nrn1326

URL : http://www.nature.com/nrn/journal/v5/n2/pdf/nrn1326.pdf

L. Peruzzotti-jametti, M. Donegá, E. Giusto, G. Mallucci, B. Marchetti et al., The role of the immune system in central nervous system plasticity after acute injury, Neuroscience, vol.283, pp.210-231, 2014.
DOI : 10.1016/j.neuroscience.2014.04.036

Z. Álvarez, O. Castaño, A. Castells, M. Mateos-timoneda, J. Planell et al., Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold, Biomaterials, vol.35, issue.17, pp.4769-81, 2014.
DOI : 10.1016/j.biomaterials.2014.02.051

E. Bible, D. Chau, M. Alexander, J. Price, K. Shakesheff et al., The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles, Biomaterials, vol.30, issue.16, pp.2985-94, 2009.
DOI : 10.1016/j.biomaterials.2009.02.012

C. Cossetti, C. Alfaro-cervello, M. Donegà, G. Tyzack, and S. Pluchino, New perspectives of tissue remodelling with neural stem and progenitor cell-based therapies, Cell and Tissue Research, vol.103, issue.35, pp.321-330, 2012.
DOI : 10.1073/pnas.0603747103

P. Lu, L. Jones, E. Snyder, and M. Tuszynski, Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury, Experimental Neurology, vol.181, issue.2, pp.115-144, 2003.
DOI : 10.1016/S0014-4886(03)00037-2

S. Kelly, T. Bliss, A. Shah, G. Sun, M. Ma et al., Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex, Proceedings of the National Academy of Sciences, vol.20, issue.7, pp.11839-11883, 2004.
DOI : 10.1046/j.1460-9568.2002.01959.x

URL : http://www.pnas.org/content/101/32/11839.full.pdf

C. Koutsakis and I. Kazanis, How Necessary is the Vasculature in the Life of Neural Stem and Progenitor Cells? Evidence from Evolution, Development and the Adult Nervous System, Frontiers in Cellular Neuroscience, vol.9, 2016.
DOI : 10.1371/journal.pone.0113972

T. Kojima, Y. Hirota, E. M. Takahashi, S. Miyoshi, I. Okano et al., Subventricular Zone-Derived Neural Progenitor Cells Migrate Along a Blood Vessel Scaffold Toward the Post-Stroke Striatum, STEM CELLS, vol.28, pp.545-54, 2010.
DOI : 10.1002/stem.306

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.306/pdf

P. Thored, J. Wood, A. Arvidsson, J. Cammenga, Z. Kokaia et al., Long-Term Neuroblast Migration Along Blood Vessels in an Area With Transient Angiogenesis and Increased Vascularization After Stroke, Stroke, vol.38, issue.11, pp.3032-3041, 2007.
DOI : 10.1161/STROKEAHA.107.488445

URL : http://stroke.ahajournals.org/content/strokeaha/38/11/3032.full.pdf

J. Ohab, S. Fleming, A. Blesch, and S. Carmichael, A Neurovascular Niche for Neurogenesis after Stroke, Journal of Neuroscience, vol.26, issue.50, pp.13007-13023, 2006.
DOI : 10.1523/JNEUROSCI.4323-06.2006

URL : http://www.jneurosci.org/content/jneuro/26/50/13007.full.pdf

Q. Shen, S. Goderie, J. L. Karanth, N. Sun, Y. Abramova et al., Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells, Science, vol.304, issue.5675, pp.1338-1378, 2004.
DOI : 10.1126/science.1095505

V. Silva-vargas, A. Maldonado-soto, D. Mizrak, P. Codega, and F. Doetsch, Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells, Cell Stem Cell, vol.19, issue.5, pp.643-52, 2016.
DOI : 10.1016/j.stem.2016.06.013

M. Muessel, N. Berman, and R. Klein, Early and specific expression of Monocyte Chemoattractant Protein-1 in the thalamus induced by cortical injury11Published on the World Wide Web on 25 May 2000., Brain Research, vol.870, issue.1-2, pp.211-232, 2000.
DOI : 10.1016/S0006-8993(00)02450-1

Y. Wang, Y. Deng, and G. Zhou, SDF-1??/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model, Brain Research, vol.1195, pp.104-116, 2008.
DOI : 10.1016/j.brainres.2007.11.068

A. Gaillard, L. Prestoz, B. Dumartin, A. Cantereau, F. Morel et al., Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons, Nature Neuroscience, vol.97, issue.10, pp.1294-1303, 2007.
DOI : 10.1515/REVNEURO.1994.5.1.11

URL : https://hal.archives-ouvertes.fr/hal-00404151

G. Albouy, V. Sterpenich, E. Balteau, G. Vandewalle, M. Desseilles et al., Both the Hippocampus and Striatum Are Involved in Consolidation of Motor Sequence Memory, Neuron, vol.58, issue.2, pp.261-72, 2008.
DOI : 10.1016/j.neuron.2008.02.008

F. Wong, B. Chan, and A. Lo, Carriers in Cell-Based Therapies for Neurological Disorders, International Journal of Molecular Sciences, vol.22, issue.6, pp.10669-723, 2014.
DOI : 10.1002/glia.1035

URL : http://www.mdpi.com/1422-0067/15/6/10669/pdf