P. Arthur and P. Hochachka, Automated Analysis of Cellular Metabolites at Nanomolar to Micromolar Concentrations Using Bioluminescent Methods, Analytical Biochemistry, vol.227, issue.2, pp.281-284, 1995.
DOI : 10.1006/abio.1995.1281

D. Bishop, J. Edge, C. Davis, and C. Goodman, Induced Metabolic Alkalosis Affects Muscle Metabolism and Repeated-Sprint Ability, Medicine & Science in Sports & Exercise, vol.36, pp.807-813, 2004.
DOI : 10.1249/01.MSS.0000126392.20025.17

D. Bishop, J. Edge, C. Thomas, and J. Mercier, High-intensity exercise acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle, Journal of Applied Physiology, vol.102, issue.2, pp.616-621, 2007.
DOI : 10.1152/japplphysiol.00590.2006

URL : https://hal.archives-ouvertes.fr/hal-01585662

D. Bishop, D. Jenkins, and L. Mackinnon, The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women, Medicine& Science in Sports & Exercise, vol.30, issue.8
DOI : 10.1097/00005768-199808000-00014

G. Bogdanis, M. Nevill, L. Boobis, H. Lakomy, and A. Nevill, Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man., The Journal of Physiology, vol.482, issue.2, pp.467-480, 1995.
DOI : 10.1113/jphysiol.1995.sp020533

A. Bonen, K. Mccullagh, C. Putman, E. Hultman, N. Jones et al., Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate, Am J Physiol Endocrinol Metab, vol.274, pp.102-107, 1998.

K. Burgomaster, N. Cermak, S. Phillips, C. Benton, A. Bonen et al., Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining, AJP: Regulatory, Integrative and Comparative Physiology, vol.292, issue.5, pp.1970-1976, 2007.
DOI : 10.1152/ajpregu.00503.2006

A. Casey, D. Constantin-teodosiu, S. Howell, E. Hultman, and P. Greenhaff, Metabolic responses of type I and II muscle fibers during repeated bouts of maximal exercise in humans, Am J Physiol Endocrinol Metab, vol.271, pp.38-43, 1996.

G. Caso, B. Garlick, G. Casella, D. Sasvary, and P. Garlick, Acute metabolic acidosis inhibits muscle protein synthesis in rats, AJP: Endocrinology and Metabolism, vol.287, issue.1, pp.90-96, 2004.
DOI : 10.1152/ajpendo.00387.2003

G. Caso and P. Garlick, Control of muscle protein kinetics by acid-base balance, Current Opinion in Clinical Nutrition and Metabolic Care, vol.8, issue.1, pp.73-76, 2005.
DOI : 10.1097/00075197-200501000-00011

H. Dubouchaud, G. Butterfield, E. Wolfel, B. Bergman, and G. Brooks, Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle, Am J Physiol Endocrinol Metab, vol.278, pp.571-579, 2000.

R. Duffield, J. Edge, and D. Bishop, Effects of high-intensity interval training on the V ? O2 response during severe exercise, J Sci Med Sport, pp.249-255, 2006.

J. Edge, D. Bishop, and C. Goodman, Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance, Journal of Applied Physiology, vol.101, issue.3, pp.918-925, 2006.
DOI : 10.1152/japplphysiol.01534.2005

J. Edge, D. Bishop, and C. Goodman, The effects of training intensity on muscle buffer capacity in females, European Journal of Applied Physiology, vol.75, issue.1, pp.97-105, 2006.
DOI : 10.1097/00005768-199610000-00018

J. Edge, C. Goodman, and D. Bishop, Very high-intensity interval training with short rest periods decreases muscle buffer capacity, Proc ECSS Conf Laussane, p.477, 2006.

T. Enoki, Y. Yoshida, J. Lally, H. Hatta, and A. Bonen, Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle, The Journal of Physiology, vol.97, issue.1, pp.433-443, 2006.
DOI : 10.1152/japplphysiol.01347.2003

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.115436/pdf

F. Eversten, J. Medbo, and A. Bonen, Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers, Acta Physiol Scand, vol.173, pp.195-205, 2001.

T. Favero, A. Zable, M. Bowman, A. Thompson, and J. Abramson, Metabolic end products inhibit sarcoplasmic reticulum Ca 2+ release and [ 3 H]ryanodine binding, J Appl Physiol, vol.78, pp.1665-1672, 1995.

R. Fisher, J. Hoffstedt, G. Hotamisligil, A. Thorne, and M. Ryden, Effects of obesity and weight loss on the expression of proteins involved in fatty acid metabolism in human adipose tissue, International Journal of Obesity, vol.26, issue.10, pp.1379-1385, 2002.
DOI : 10.1038/sj.ijo.0802110

G. Gaitanos, C. Williams, L. Boobis, and S. Brooks, Human muscle metabolism during intermittent maximal exercise, J Appl Physiol, vol.75, pp.712-719, 1993.

H. Green, R. Helyar, M. Ball-burnett, N. Kowalchuk, S. Symon et al., Metabolic adaptations to training precede changes in muscle mitochondrial capacity, J Appl Physiol, vol.72, pp.484-491, 1992.

A. Harmer, M. Mckenna, J. Sutton, R. Snow, P. Ruell et al., Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans, J Appl Physiol, vol.89, pp.1793-1803, 2000.

T. Hashimoto, R. Hussien, S. Oommen, K. Gohil, and G. Brooks, Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis, The FASEB Journal, vol.21, issue.10, pp.2602-2612, 2007.
DOI : 10.1096/fj.07-8174com

J. Holloszy and E. Coyle, Adaptations of skeletal muscle to endurance exercise and their metabolic consequences, J Appl Physiol, vol.56, pp.831-838, 1984.

E. Hultman and K. Sahlin, Acid-base balance during exercise, Exerc Sport Sci Rev, vol.8, pp.41-128, 1980.

S. Jubrias, G. Crowther, E. Shankland, R. Gronka, and K. Conley, Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo, J Physiol, vol.533, pp.589-599, 2003.
DOI : 10.1113/jphysiol.2003.045872

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2003.045872/pdf

C. Juel, Regulation of cellular pH in skeletal muscle fiber types, studied with sarcolemmal giant vesicles obtained from rat muscles, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1265, issue.2-3, pp.127-132, 1995.
DOI : 10.1016/0167-4889(94)00209-W

C. Juel and A. Halestrap, Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter, The Journal of Physiology, vol.67, issue.suppl. 1, pp.633-642, 1999.
DOI : 10.1006/exer.1998.0533

C. Juel, M. Holten, and D. F. , Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans, The Journal of Physiology, vol.39, issue.1, pp.297-304, 2004.
DOI : 10.1016/0026-0495(90)90133-W

C. Juel, C. Klarskov, J. Nielsen, P. Krustrup, M. Mohr et al., Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle, AJP: Endocrinology and Metabolism, vol.286, issue.2, pp.245-251, 2004.
DOI : 10.1152/ajpendo.00303.2003

P. Krustrup, M. Mohr, L. Nybo, J. Jensen, J. Nielsen et al., The Yo-Yo IR2 Test: Physiological Response, Reliability, and Application to Elite Soccer, Medicine & Science in Sports & Exercise, vol.38, issue.9, pp.1666-1673, 2006.
DOI : 10.1249/01.mss.0000227538.20799.08

A. Mannion, P. Jakeman, and P. Willan, Determination of human skeletal muscle buffer value by homogenate technique: methods of measurement, J Appl Physiol, vol.75, pp.1412-1418, 1993.

K. Mccullagh, R. Poole, A. Halestrap, O. Brien, M. Bonen et al., Role of the lactate transporter (MCT1) in skeletal muscles, Am J Physiol Endocrinol Metab, vol.271, pp.143-150, 1996.

M. Mohr, P. Krustrup, J. Nielsen, L. Nybo, M. Rasmussen et al., Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development, AJP: Regulatory, Integrative and Comparative Physiology, vol.292, issue.4, pp.1594-1602, 2007.
DOI : 10.1152/ajpregu.00251.2006

J. Pan, J. Hamm, H. Hetherington, J. Rothman, and R. Shulman, Correlation of lactate and pH in human skeletal muscle after exercise by1H NMR, Magnetic Resonance in Medicine, vol.367, issue.1, pp.57-65, 1991.
DOI : 10.1113/jphysiol.1977.sp012095

S. Phillips, H. Green, M. Tarnopolsky, and S. Grant, Increased clearance of lactate after short-term training in men, J Appl Physiol, vol.79, pp.1862-1869, 1995.

H. Pilegaard, K. Domino, T. Noland, C. Juel, Y. Hellsten et al., Effect of high-intensity exercise training on lactate/H + transport capacity in human skeletal muscle, Am J Physiol Endocrinol Metab, vol.276, pp.255-261, 1999.

R. Robergs, F. Ghiasvand, and D. Parker, Lingering construct of lactic acidosis, AJP: Regulatory, Integrative and Comparative Physiology, vol.289, issue.3, pp.502-516, 2005.
DOI : 10.1152/ajpregu.00117.2005

D. Roth and G. Brooks, Training does not affect zero-trans lactate transport across mixed rat skeletal muscle sarcolemmal vesicles, J Appl Physiol, vol.75, pp.1559-1565, 1993.
DOI : 10.1249/00005768-199205001-00845

S. Roth, R. Ferrell, D. Peters, E. Metter, B. Hurley et al., Influence of age, sex, and strength training on human muscle gene expression determined by microarray, Physiological Genomics, vol.10, issue.3, pp.181-190, 2002.
DOI : 10.1152/physiolgenomics.00028.2002

K. Sahlin, R. Harris, B. Nylind, and E. Hultman, Lactate content and pH in muscle samples obtained after dynamic exercise, Pfl???gers Archiv European Journal of Physiology, vol.49, issue.2, pp.143-149, 1976.
DOI : 10.1007/BF00585150

R. Sharp, D. Costill, W. Fink, and D. King, Effects of Eight Weeks of Bicycle Ergometer Sprint Training on Human Muscle Buffer Capacity, International Journal of Sports Medicine, vol.07, issue.01, pp.13-17, 1986.
DOI : 10.1055/s-2008-1025727

L. Spriet, M. Lindinger, R. Mckelvie, G. Heigenhauser, and N. Jones, Muscle glycogenolysis and H + concentration during maximal intermittent cycling, J Appl Physiol, vol.66, pp.8-13, 1989.

P. Srere, [1] Citrate synthase, Methods Enzymol, vol.13, pp.3-5, 1969.
DOI : 10.1016/0076-6879(69)13005-0

D. Street, J. Nielsen, J. Bangsbo, and C. Juel, Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium, The Journal of Physiology, vol.537, issue.2, pp.481-489, 2005.
DOI : 10.1113/jphysiol.2001.012954

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2005.086801/pdf

C. Thomas, D. Bishop, T. Moore-morris, and J. Mercier, Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis, AJP: Endocrinology and Metabolism, vol.293, issue.4, pp.916-922, 2007.
DOI : 10.1152/ajpendo.00164.2007

C. Thomas, S. Perrey, K. Lambert, G. Hugon, D. Mornet et al., Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans, Journal of Applied Physiology, vol.98, issue.3, pp.804-809, 2005.
DOI : 10.1152/japplphysiol.01057.2004

URL : https://hal.archives-ouvertes.fr/inserm-00148282

C. Weber and D. Schneider, Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent, Journal of Applied Physiology, vol.92, issue.5
DOI : 10.1152/japplphysiol.00546.2001

URL : http://jap.physiology.org/content/jap/92/5/1795.full.pdf

A. Weston, K. Myburgh, F. Lindsay, S. Dennis, T. Noakes et al., Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists, European Journal of Applied Physiology, vol.75, issue.1, pp.7-13, 1997.
DOI : 10.1007/s004210050119

M. Wilson, V. Jackson, C. Heddle, N. Price, H. Pilegaard et al., Lactic Acid Efflux from White Skeletal Muscle Is Catalyzed by the Monocarboxylate Transporter Isoform MCT3, Journal of Biological Chemistry, vol.271, issue.26, pp.15920-15926, 1998.
DOI : 10.1002/aja.1001710303