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ABSTRACT
The discrete tomographic reconstruction problem is generally
considered for binary image. In this work, we consider the re-
construction of an image with more than two grey levels and
compare two reconstruction methods. The first one is based
on a classical TV regularization and the second one is a level-
set regularization method. In this second method, the discrete
tomographic problem is formulated as a shape optimization
problem with several level-set functions and regularized with
Total Variation-Sobolev terms. The two methods are applied
to an image size of 128 × 128, with several additive Gaus-
sian noises on the raw projection data and several number of
projections.

Index Terms— X-ray imaging, TV regularization, dis-
crete tomography, level-set regularization, inverse problems.

1. INTRODUCTION

The tomographic reconstruction problem has many applica-
tions in medical imaging and material science. It is a highly
ill-posed problem when the number of projection angles is
decreased as it is the case for in vivo imaging of 3D bone
micro-architecture [1] where the radiation dose has to be re-
duced [2]. Many attempts can be found in the literature to find
stable solutions by various regularization methods like Total
Variation (TV) or sparsifying transforms [3–8]. A very use-
ful way to convert the few view tomographic reconstruction
problem to a simpler problem is to consider it as a discrete
inverse problem in which the function to be reconstructed can
take a finite number of discrete values [9]. The most usual dis-
crete tomography problem is the binary tomography problem
which is associated with an under-determined linear system
of equations with the linear Radon projection operator R and
binary constraints:

Rf = pδ f = (f1, .......fn) ∈ {0, 1}n (1)

relating the pixel values (fi)1≤i≤n of the image and the mea-
sured projection values pδ which is some approximation of
the correct data p, corresponding to the true solution f∗ with
Rf∗ = p. This binary approach is not sufficient in the case of
multi-materials objects where the function to be reconstructed
can take more than two different values. Many attempts can
be found in the literature to solve the binary problem based

on algebraic methods [10, 11] or convex analysis [12–14].
Markov random field can also be very useful [15]. Yet, there
are few studies of the multi-level tomographic reconstruction
problem. In a variational framework, the image is obtained
by the minimizatin of a regularization functional E(f) con-
structed with a data fidelity term that measures the consis-
tency between the estimate and the measurements and a reg-
ularization term J(f) that imposes an a priori constraint on
the solution. The data-fitting term is usually based on the L2

norm and the regularization functional can then be written as:

E(f) =
∥∥∥Rf − pδ∥∥∥2

L2

+ λJ(f) (2)

The parameter λ is the regularization parameter balanc-
ing the contribution of the two terms. The noisy data pδ
are corrupted by noise with a noise of level δ, satisfying
‖pδ−p‖2 ≤ δ. Recently, the binary tomography problem has
been investigated with a comparison of the Total Variation
and Level-set algorithm [16–18]. For an image f ∈ H1(Ω),
the TV regularization is based on computing the L1 norm of
the gradient [19, 20].

JTV (f) =

∫
Ω

|∇f(r)|dr (3)

On the other hand, level-set methods, well established in the
field of image processing, have been designed recently to re-
construct solutions of inverse problems with piecewise con-
stant solutions [18, 21–25].

The main contribution of this work is to investigate the
level-set approach used for the binary tomography problem to
the multi-level case and to compare this regularization method
with the Total Variation approach. The comparison of the in-
version schemes is performed on a simple Shepp-Logan phan-
tom with several noise levels and different number of projec-
tions. This paper is structured as follows. After the intro-
duction, the second section summarizes the Total Variation
regularization method and the Alternate Direction of Mini-
mization Method (ADMM) used to minimize the regulariza-
tion functional. We also detail the nonlinear inverse problem
formulation of the multi-level tomography problem together
with the classical level-set regularization. The numerical re-
sults obtained are reported and discussed in the last section.
Then main conclusions are given.
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2. TOTAL VARIATION REGULARIZATION AND
ADMM APPROACH

For comparison purposes with the level-set regularization re-
sults, we have tried to solve the discrete tomography recon-
struction problem with the Total Variation regularization. We
have thus considered the following optimization problem:

(P ) minimize
µ

2
‖p−Rf‖22 + JTV (f) (4)

A fast, efficient TV/L2 minimization algorithm based on an
augmented Lagrangian function and alternating minimization
has been proposed recently [19, 20] and is now the state-of-
art method to minimize the TV regularization functional. Our
problem is thus formulated as a minimization problem of the
ADMM form with the following Lagrangian function:

L(f, (gi), (λi)) =
∑
i

(‖gi‖2 − λti(gi −Dif)

+
β

2
‖gi −Dif‖22) +

µ

2
‖pδ −Rf‖22 (5)

where µ is the regularization parameter and β the Lagrangian
parameter. The Lagrange multipliers (λi) are vectors in R2n2

.
For each pixel i, Dif ∈ R2 represents the first-order finite
difference at pixel i in both horizontal and vertical directions.
The ADMM algorithm searches for the saddle point of the
augmented Lagrangian by the following minimizations:

gk+1
i = argmin

gi
L(fk, (gi), (λ

k
i )) (6)

fk+1 = argmin
f
L(f, (gk+1

i ), (λki )) (7)

λk+1
i = argmax

λi
L(fk+1, (gk+1

i ), (λi)) (8)

The sequences (fk, gki , λ
k
i ) generated by the ADMM al-

gorithm converges to a Kuhn-Tucker point of problem (P),
(f∗, g∗i , λ

∗
i ). The new iterate fk+1 is obtained from the following

linear system:

(
∑
i

Dt
iDi+

µ

β
RtR)fk+1 =

∑
i

Dt
i(g

k+1
i − 1

β
λki )+

µ

β
Rtpδ (9)

3. LEVEL-SET REGULARIZATION FOR MULTI-LEVEL
TOMOGRAPHY

3.1. Level-set formulation of the multi-level tomography prob-
lem

Our new level-set tomography method is based on a formulation
of the reconstruction as a nonlinear inverse problem [26]. For Ω
a bounded Lipschitz open subset in R2, we assume that the function
to be reconstructed f can take different values (fi) on regular sets
Ωi ⊂ Ω, and the function f can thus be written f =

∑
i χΩi . In the

following, for the sake of simplicity, we consider in this work only
the case of three levels for the function to reconstruct, f1, f2 and f3.
We assume that the image f to be reconstructed can be represented
with two level-set functions θ1 and θ2:

f = f1(1−H(θ1))(1−H(θ2)) + f2H(θ1)H(θ2)

+f3H(θ2)(1−H(θ1)) (10)

where the two level-set functions θ1 and θ2 belongs to the first-
order Sobolev space H1(Ω). The Heaviside distribution is defined
by H(θ) = 1 if θ > 0 and 0 otherwise.

With respect to θ1 and θ2, the reconstruction problem becomes
nonlinear and consists in determining the level-set functions θ1 and
θ2 such that RH(θ1, θ2) = pδ . Since H is discontinuous, it is
necessary to consider generalized minimizers of the regularization
functional [21,22]. These minimizers can be approximated by mini-
mizers of smoothed regularization functional with an approximation
functionHε. The regularization functional to be minimized can then
be written as:

E(θ1, θ2) =
‖RH(θ1, θ2)− pδ‖22

2
+ α(F (θ1) + F (θ2)) (11)

where F is a regularization term for the level-set functions. In
this work, we considered a Total Variation-H1 regularization func-
tional [21, 22] for each level-set function:

F (θ) = β1

∫
|∇H(θ)|dx+ β2‖θ‖2H1

(12)

The regularization parameters β1, β2 determines the relative weights
of the stabilizing terms. For the sake of simplicity, they were taken
equal for the two level-set functions θ1 and θ2.

3.2. Implementation of the level-set regularization approach

In the numerical implementation, it is necessary to replace to Heav-
iside function H and the Dirac function δ by smoothed approxima-
tions. The following smooth approximations of the Heaviside func-
tion H has been used Hε(x) = 1+2ε

2
(erf(x/ε) + 1)− ε, where ε is

a real positive constant. The smoothing parameters for ε1 and ε2 are
given the same value in this work.

The smoothed Tikhonov regularization functional is then given
by:

Eε(θ) =
‖Rf(θ1, θ2)− pδ‖22

2
+ β1|Hε(θ1)|TV +

β2‖θ1‖2H1
+ γ1|Hε(θ2)|TV + γ2‖θ2‖2H1

(13)

where |.|TV is the Total Variation semi-norm. The minimizers of
the Tikhonov functionals are found with a first-order optimality con-
dition for the two level-set functions for the smoothed functionals,
∂Eε
∂θ1

= G1(θ1, θ2) = 0 and similarly G2(θ1, θ2) = 0, with :

G1(θ1, θ2) =
∂f

∂θ1
R∗(Rf(θ1, θ2)− pδ) + β2(I −∆)(θ1)

+β1
∂|Hε(θ1)|TV

∂θ1
(14)

whereR∗ denotes the adjoint of the forward projection operator. The
derivatives of f with respect to θ1 and θ2 can be written:

∂f

∂θ1
= (f2 − f3)Hε(θ2)H

′
ε(θ1)− f1H

′
ε(θ1)(1−Hε(θ2))

∂f

∂θ2
= f2H

′
ε(θ2)Hε(θ1) + f3H

′
ε(θ2)(1−Hε(θ1))

−f1(1−Hε(θ1))H
′
ε(θ2) (15)

where the derivativeH
′
ε is the smoothed approximation of the Heav-

iside function and the multiplication is to be understood pixelwise.

2016 24th European Signal Processing Conference (EUSIPCO)

1699



The differential of the |Hε(θ1)|TV is given by:

∂|Hε(θ1)|TV
∂θ1

= −δ(θk1 )
∇θ1

|∇θ1|
(16)

From the current estimate θk1 , the update θk+1
1 = θk1 + δθ is ob-

tained with the variation δθ which is calculated with a Gauss-Newton
method with a linearization of the condition G1(θk1 + δθ) = 0 [26]:

V ∗k Vkδθ + β2(I −∆)(δθ)− β1δ(θ
k
1 )∇. ∇δθ

|∇θk1 |
= −G(θk1 ) (17)

where Vk is the operator Vk = R ∂f
∂θ1

(θk1 ). And the same formula
holds for the level-set function θ2. These symmetric linear systems
are solved alternatively by a conjugate gradient method.

4. RESULTS AND DISCUSSION

In this section, we present the simulation details and the results ob-
tained with the Total Variation and level-set regularization.

4.1. Simulation details

The TV and level-set regularization methods have been compared
on a three grey levels Shepp-Logan phantom displayed in Fig. 1 of
size 128×128, which is reconstructed from Np = 400 projections
withNr = 185 X-rays per projection with Filtered Back Projections
(FBP). In our simulation, this image regarded as the ”ground-truth”
image. This reference image has the values f1 = 0 (blue region),
f1 = 1 (green region) and f2 = 2 (red region).

The reconstruction methods were applied to the raw projec-
tion data p with Gaussian noises with various standard deviation
σp. The noise level δ of the noisy projection data pδ is given by
δ =

√
MNpσp. For comparison, the FBP algorithm has also been

tested on the same phantom with the same noise levels and number
of projections. In our experiments, the projection operator R is
taken as the discrete approximation of Radon transform, which is
implemented in Matlab Toolbox. Two kinds of Gaussian noises have
been added to the raw projection data p with the standard deviations
σp = 3 and σp = 6.5 corresponding to Peak to Peak Signal to
Noise Ratio (PPSNR) of 18dB and 12dB. The TV and level-set
regularization methods were tested on a limited number of views,
M , with M = 20, 30 or 50.

In our simulations, based on the Morozov principle [27], the TV
regularization parameter µ was chose when it satisfies the condi-
tion: |‖Rf(µ)−pδ‖−δ|

δ
≤ 0.1, where f(µ) is the reconstructed image

obtained at the end of TV process with the regularization parame-
ter µ. The ADMM iterations are stopped when the iterates stagnate
‖fk+1−fk‖
‖fk‖ ≤ 0.01.
In the level-set approach, the initial level-set functions were set

to θ1 = 0, and θ2 = 0. The real positive constant ε controlling the
scale of the smoothed Dirac function was set as 11. Better recon-
struction results are obtained when ε is gradually decreased. With
this decrease, the convergence speed becomes lower. The level-set
regularization parameters of β1 and γ1 were set to 0 because the H1

term dominates the TV term [21, 22]. The regularization parameters
are chosen to obtain the best decrease of the discrepancy term. The
image obtained for the minimum value of the discrepancy term is
considered as the best reconstructed image. At the end of the two
reconstruction processes, the grey-level reconstructed images were

projected on the discrete values: f = {0, 1, 2} with thresholds 0.5
and 1.3.

Fig. 1. Reconstruction of the bone cross-section from 400 pro-
jections with the FDK algorithm, as the “ground-truth” im-
age.

4.2. Numerical results

As an example of the reconstruction results obtained, the grey-level
and discrete reconstructed images with M = 50 projection angles,
for the standard deviation σp = 3, are shown in Fig.2 and Fig.3
respectively for TV regularization and the Level-set method for the
noise level σP = 3. The difference maps corresponding to Fig.3
are displayed in Fig.4. In both cases, the reconstructed errors are
localized on the boundaries.

(a) (b)

Fig. 2. Grey-level reconstructed images with 50 projections
for σp = 3 (a) TV; (b) LS

(a) (b)

Fig. 3. Discrete reconstructed images with 50 projections for
σp = 3 (a) TV; (b) LS
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(a) (b)

Fig. 4. Difference maps between the ground-truth and the re-
constructed images with 50 projection for σp = 3. (a) TV; (b)
LS

In order to evaluate the quality of reconstruction, we have calcu-
lated the evolution of the discrepancy term ‖Rfk − pδ‖ and of the
missclassification rate MR as a function of the number of iterations
k. The misclassification rate MR was defined to estimate the error
between the final discrete images fb and the ground-truth f∗. It is
defined as:

MR =
Nd
N
× 100% (18)

where Nd is the number of different pixels in the discrete recon-
structed image and ground-truth image, andN is the total number of
pixels.

The evolution curves of the discrepancy term and of the mis-
classification rate are displayed in Fig.5 and Fig.6, for the different
number of projections investigated for the noise level σp = 3 for the
two regularization approaches.

The missclassification rates obtained with the Total Variation,
level-set and FBP algorithm are summarized in Table.1 for the vari-
ous noise levels and number of projections. In most cases, the mini-
mum reconstruction errors are obtained with the TV regularization.

Table 1. Missclassification rates (%) obtained with Total Vari-
ation, level-set and FBP approaches

TV LS FBP

σp = 3, M=20 1.73 3.39 19.16
σp = 3, M=30 1.40 2.88 13.47
σp = 3, M=50 1.31 2.84 6.13
σp = 6.5, M=20 2.87 6.98 34.64
σp = 6.5, M=30 2.89 5.16 29.46
σp = 6.5, M=50 1.90 3.58 23.13

The reconstruction results obtained with the TV ADMM algo-
rithm are better than the ones obtained with the level-set method.
TV regularization method is well-known to preserve image edges
and provide good reconstruction images with sparse view sampling.
The level line of the Shepp-Logan phantom is well restored with the
TV regularization term which tends to minimize its perimeter. The
boundaries of the reconstructed images obtained with TV regular-
ization are much smoother. A more complex object will be tested as
before [18] in the future because the level-set method may be a more
efficient method for objects with a complex topology structure.
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Fig. 5. (a) Evolution with the iterations of ‖ Rf −pδ ‖ for TV
method. (b) Evolution with the iterations of the misclassifi-
cation rate for TV method. We chose the best reconstruction
according to the Morozov principle.

0 100 200 300 400 500 600
200

400

600

800

1000

1200

1400

iteration number

||R
f-

p
||

 

 

M=20
M=30
M=50

(a)

0 100 200 300 400 500 600
2

4

6

8

10

12

14

iteration number

M
R

 %

 

 

M=20
M=30
M=50

(b)

Fig. 6. (a) Evolution with the iterations of ‖ Rf − pδ ‖ for
LS method. (b) Evolution with the iterations of the misclassi-
fication rate for LS method. We chose the best reconstruction
with the minimum value of the discrepancy term.

5. CONCLUSION

In this paper, two reconstruction methods for multi-level discrete to-
mography with a limited number of projections have been compared.
The first one is the classical TV regularization approach. The opti-
mal solution is obtained with the ADMM algorithm. The second
method is based on a representation of the function to be recon-
structed with several level-set functions which leads to a non-linear
inverse problem formulation of the discrete tomography problem.
The simple tests done on the simple Shepp-Logan phantom show
that the TV regularization outperforms the level-set methods on most
cases. Experiments on more complex objects would be necessary to
further evaluate the proposed level-set method. Other methods will
be compared with these approaches on more complex objects in fu-
ture studies.
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