A Three-Stage Approach for Segmenting Degraded Color Images: Smoothing, Lifting and Thresholding (SLaT)

Abstract : In this paper, we propose a SLaT (Smoothing, Lifting and Thresh-olding) method with three stages for multiphase segmentation of color images corrupted by different degradations: noise, information loss and blur. At the first stage, a convex variant of the Mumford-Shah model is applied to each channel to obtain a smooth image. We show that the model has unique solution under different degradations. In order to properly handle the color information, the second stage is dimension lifting where we consider a new vector-valued image composed of the restored image and its transform in a secondary color space to provide additional information. This ensures that even if the first color space has highly correlated channels, we can still have enough information to give good segmenta-tion results. In the last stage, we apply multichannel thresholding to the combined vector-valued image to find the segmentation. The number of phases is only required in the last stage, so users can modify it without the need of solving the previous stages again. Experiments demonstrate that our SLaT method gives excellent results in terms of segmentation quality and CPU time in comparison with other state-of-the-art segmentation methods.
Type de document :
Article dans une revue
Journal of Scientific Computing, Springer Verlag, 2017, Journal of Scientific Computing, 24, pp.1399 - 1399. <10.1007/s10915-017-0402-2>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01158169
Contributeur : Mila Nikolova <>
Soumis le : mercredi 15 mars 2017 - 14:28:58
Dernière modification le : samedi 18 mars 2017 - 01:11:20
Document(s) archivé(s) le : vendredi 16 juin 2017 - 13:53:39

Fichier

jsc_slat_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Xiaohao Cai, Raymond Chan, Mila Nikolova, Tieyong Zeng. A Three-Stage Approach for Segmenting Degraded Color Images: Smoothing, Lifting and Thresholding (SLaT). Journal of Scientific Computing, Springer Verlag, 2017, Journal of Scientific Computing, 24, pp.1399 - 1399. <10.1007/s10915-017-0402-2>. <hal-01158169v2>

Partager

Métriques

Consultations de
la notice

234

Téléchargements du document

11