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ABSTRACT 

 

 

 

 

 

We analyzed the cellular distribution of the pancreatic inflammatory protein 

lithostathine and its receptor EXTL3 in the brain of the lemurian primate Microcebus 

murinus which develops amyloid deposits along with aging. In adult animals (2-4.5 

year-old), lithostathine and EXTL3 immunoreactivities were largely distributed in the 

whole brain, and more intensively in almost all cortical layers and hippocampal 

formation. Lithostathine was observed in the perikarya and neurites of cortical 

neurons but also in glial cells in the border of the ventricle and the corpus callosum. 

In healthy aged animals (8-13 year-old), highest densities of lithostathine containing 

cells were observed, mainly in occipital and parietal cortex. In aged animals with A 

deposits, the increase in lithostathine immunoreactivity was lower as compared with 

aged animals. Noteworthly, lithostathine-immunopositive cells did almost never co-

localize with A plaques. In conclusion, lithostathine immunoreactivity in adult 

Microcebus murinus appeared ubiquitous and particularly in visual, sensorial and 

cognitive brain areas. Immunoreactivity increased with aging and appeared markedly 

affect in neuropathological conditions. Its possible neuroprotection or 

neurodegeneration role in Alzheimer pathology deserves therefore to be investigated. 

 

 

Key words: lithostathine, lemur, -amyloid deposit, EXTL3, Reg1 
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1. Introduction 

Many degenerative diseases result from the aberrant polymerization and 

accumulation of specific proteins (Walker et al., 2006). These conformational 

diseases or proteopathies include neurological disorders such as Alzheimer's, 

Parkinson's, Huntington's and prion diseases, diverse systemic disorders, particularly 

amyloidoses including type II diabetes, light chain amyloidosis and cystic fibrosis 

(Aigelsreiter et al., 2007). At least 40 different proteins forming deposits have been 

described so far. Disorders involving protein deposition include a major protein 

component that forms the core, and additional species, including metal ions, 

glycosaminoglycans and glycoproteins. Many functions for these “pathological 

chaperones” have been reported, ranging from involvement in amyloidosis to a major 

role of stabilization of amyloid deposits. Their contribution to amyloid toxicity has 

been also investigated (Alexandrescu, 2005). 

Among proteins that could contribute to amyloidosis, exocrine pancreatic protein 

named also lithostathine or Reg1 alphaor pancreatic Thread Protein (PTP), is an 

inflammatory protein that forms deposits in pancreatic ducts of patients in chronic 

calcifying pancreatitis (De Caro et al., 1979). Originally identified as a secretory 

protein produced in pancreas by acinar cells (Iovanna et al., 1991), lithosthatine is 

very susceptible to self-proteolysis under specific pH conditions (Cerini et al., 1999). 

The cleavage produces a soluble N-terminal undecapeptide and a C-terminal part of 

133 amino acids that precipitate and form protease-K-resistant fibrils at physiological 

pH (Gregoire et al., 2001). Although its physiological function in digestive organs 

remains debated (Bimmler et al., 1997; De Reggi et al., 1998), the protein tightly 

binds calcium carbonate crystals, suggesting an inhibitory activity on CaCO3 crystal 

growth, thus preventing lithiasis (Bernard et al., 1992; Geider et al., 1996; Gerbaud et 
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al., 2000; Lee et al., 2003) . It has also been shown that acute pancreatitis induces 

Reg1 gene expression and protein production in the pancreas (Dusetti et al., 1996; 

Iovanna et al., 1991). This increase of Reg1 protein is associated with Reg1 receptor 

mRNA (Kobayashi et al., 2000) suggesting that an upregulation of the receptor 

expression may also be important in the proliferative response of pancreatic 

regeneration (Bluth et al., 2006). In gastric cells, the lithostathine protein was shown 

to be a regulator of gastric mucosal proliferation (Perfetti et al., 1994) and to function 

as a mitogenic and/or an antiapoptotic factor in the development of early gastric 

cancer (Sekikawa et al., 2005). Accordingly, Watanabe et al. (Watanabe et al., 1994) 

suggested that Reg1 protein has a trophic effect on isolated islet cells. More recently, 

a potential role of lithosthatine in normal and neoplastic germ cell proliferation has 

been also described (Mauro et al., 2008).  

Interestingly, the presence of lithostathine was also evidenced in human brain 

(Ozturk et al., 1989; de la Monte et al., 1990). Protein expression depends on the 

developing human brain and the presence of neurofibrillary tangles in the 

pathogenesis of Alzheimer’s disease (AD). More recently, accumulation of the protein 

was concomitant with the formation of Aβ and prion amyloid plaques in patients with 

AD and prion diseases (Duplan et al., 2001; Laurine et al., 2003). While the 

accumulation of the protein has been linked to the inflammatory process of the 

pathogenesis of AD (Duplan et al., 2001), little is known concerning the expression 

pattern of lithostathine in normal aging. 

In the present investigation, we investigated the cellular distribution of lithostathine 

within the brain of a primate model of aging, Microcebus murinus. With age, loss of 

cholinergic neurones was evidenced in the basal telencephalon in some animals 

(Mestre and Bons, 1993). In addition, lemurian primate presents similar aging 
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characteristics as those observed in humans, such as modifications of the biological 

rhythms (Perret and Aujard, 2006), cognitive alterations (Picq, 1995; Picq, 2007; 

Bons et al., 2006) and cortical atrophy (Dhenain et al., 2000; Kraska et al., 2009) and 

it spontaneously develops numerous extracellular β-amyloid deposits in the cortical 

parenchyma (Bons et al., 1994; Mestre-Frances et al., 2000; Mestre-Frances et al., 

1996). Rarely, neurofibrillary degeneration was observed in the cortical pyramidal 

neurons (Bons et al., 1991). In addition, accumulation of Tau proteins was also 

observed into the neocortex of young and old mouse lemurs (Mestre and Bons, 1993; 

Bons et al., 1995; Delacourte et al., 1995; Giannakopoulos et al., 1997) but not 

correlated to the presence of Aβ plaques (Giannakopoulos et al., 1997). 

To determine the impact of aging and related pathology on lithostathine and its 

receptor brain expression, we performed a comparative analysis of lithostathine 

distribution in the brain of Microcebus Murinus as a function of age.  

 

2. Material and methods 

2.1. Brain tissue 

The brains of 20 adult grey mouse lemurs Microcebus murinus aged from 1 to 13 

years were collected. Three groups were considered:  8 adults (1-4.5 years-old), 6 

healthy aged (5-13 years-old) (Perret, 1997) or 6 aged with amyloid plaques (5.5-13 

years-old). Grey mouse lemurs were all born and kept in captivity within our breeding 

colony (Ecole Pratique des Hautes Etudes, license approval Nbr 34-05-026-FS, 

France), according to the guidelines of the French Ethical Committee (Decree 87-

848) and the European Community Directive (86/609/EEC). The animals were 

anesthetized with ketamine (150 mg/kg). Lemur brains were fixed by transcardially 

perfusion with 50 ml saline (0.9%) followed by 100 ml Antigenfix solution (Diapath, 
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France) or by immersion in Antigenfix solution for 24 hours. Brains were embedded in 

paraplast and sliced in 8 µm serial sagittal sections or cryoprotected (30% sucrose 

solution for 3 days), and quickly frozen into isopentane chilled in liquid nitrogen. 

Frozen brains were mounted on a cryostat (Leica, France) and serially cut into 10 µm 

sagittal sections. 

2.2. Immunohistochemical procedures 

2.2.1. Primary antibodies 

The following antibodies were used to detect lithostathine immunopositive cells, its 

receptor or to identify various cell phenotypes in the brain: (1) rabbit polyclonal 

antibody against human lithosthatine protein (Litho-romeo, 1:100; (Duplan et al., 

2001)); (2) goat IgG polyclonal antibody against lithostathine receptor (EXTL3, 1:100; 

R&D Systems, UK); (3) rabbit polyclonal antibody against amyloid peptide (1-42) 

(FCA3542, 1:1,000; Calbiochem, USA); (4) mouse IgG monoclonal antibody against 

glial fibrillary acidic protein (GFAP, 1:1,000; Sigma-Aldrich, France); (5) mouse IgG 

monoclonal antibody against human amyloid protein (1-42) (8G7, 1:100, Alexis 

Biochemicals, UK); (6) mouse IgG monoclonal antibody against β-tubulin protein 

(ßtub, 1:250; Sigma-Aldrich); (7) mouse IgG monoclonal antibody against 

microtubule associated protein (MAP2, 1:500; Sigma-Aldrich) and (8) mouse IgG 

monoclonal antibody against neuronal nuclei (NeuN, 1:250; Chemicon, USA). 

 

2.2.2. Single immunoperoxidase labeling 

Paraffin sections were dewaxed and hydrated through toluene and ethanol gradient 

and were then washed in water followed by immersion in hydrogen peroxide 3% for 

30 min, rinsed in Tris-buffered saline (TBS), incubated with 3% goat serum 

containing 0.3% Triton X-100 in TBS for 30 min and then with anti-lithostathine 
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(1:100) or Aβ antibodies (8G7, FCA3542) (1:500) overnight at 4°C. After 3 washes in 

TBS, sections were incubated for 30 min in biotinylated goat or mouse anti-rabbit IgG 

(1:100, Vector USA). Subsequently, sections were washed again 3 times in TBS 

followed by 1h incubation in avidin-peroxydase complex (1:100, Vector). The sections 

were then washed in Tris buffer (0.5 M, pH 8.5) and reacted with diaminobenzidine 

tetrahydrocloride (DAB; 0.25 mg/ml, Sigma-Aldrich) in the same buffer containing 

0.3% hydrogen peroxide. Standard immunohistochemical controls were performed 

including omission of the primary antibody, use of irrelevant secondary antibodies. 

No labeling was observed for controls. 

 

2.2.3. Double immunoperoxidase labeling (DAB/histogreen) 

The immunoperoxidase double labeling were carried out in the following two-step 

procedure. First, DAB was used for the detection of lithostathine as described above. 

The second step consisted of incubation of sections with formic acid (80%) for 10 

min. After 5 washes in water, sections were then incubated with 3% goat serum 

containing 0.3% Triton X-100 in TBS for 30 min and then with Aβ42 antibody 

(FCA3542, 1:500) overnight at 4°C. After successive steps of washing, incubation 

with biotinylated anti-rabbit IgG (1:100) and with avidin-peroxidase complex, 

respectively, the HistoGreen substrate kit (HISTOPRIME, AbCys, France) was used 

for detection of Aβ42-immunoreactive deposits. 

2.2.4. Double immunofluorescent labeling 

For double immunofluorescent labeling, sections were incubated in a cocktail of 

monoclonal and polyclonal primary antibodies followed by secondary antibodies 

linked to different fluorophores. The lithostathine antibody (1:100) was co-incubated 

with either anti-NeuN (1:250), anti-MAP2 (1:500), anti-βtub (1:250) or anti-GFAP 
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(1:500). The sections were prepared by using the same procedure as the single-

labeled sections. The sections were incubated in primary antibodies overnight at 4°C, 

washed and then incubated in species-specific fluorescent secondary antibody 

directly linked to anti-rabbit and anti-goat AlexaFluor 488 (1:2,000, Molecular Probes, 

Leiden, The Netherlands), anti-rabbit AlexaFluor 555 (1:2,000) or anti-mouse Cy3 

(1:2,000, Jackson ImmunoResearch Inc., USA). The nuclei were counterstained with 

4',6'-diamino-2-phenylindole (DAPI, Molecular Probes). To detect any cross-reactivity 

in the double labeling experiments, each primary antibody in the pair was incubated 

with both secondary antibodies to be used in the double labeling.  

2.3. Analysis 

The main aim of the experiments carried out in this study was to determine the 

regional and cellular distribution of lithostathine in the grey mouse lemur brain.  

First single immunoperoxidase labeled sections were examined by light microscopy 

and qualitative observations were recorded. The quantitative study in cortical areas 

was performed using standardized image analysis and mapping system from Explora 

Nova (Mercator software). Paraffin-embedded sections from medial to temporal 

hemisphere were investigated every 400µm for cell counting from the coordinates 

L:0.6mm to L:3.40mm of the mouse lemur brains (Bons et al., 1998). Each cortical 

lithostathine immunoreactive cell showing labelled perikaria and neurites (fig. 1 C-G) 

was plotted on each section (ie, 8 sections per animal). From experimental data, 

software facilities generates a map for each section (cf fig.5 A, B, I, J). The count of 

the immunoreactive cells was done by two different scientists unaware experimental 

conditions and independently each other.  

Double-labeling immunoperoxidase experiments using sections labeled with 

antibodies against lithostathine and Aβ1-42 were carried out to investigate the 
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colocalization of proteins. Double-immunofluorescent staining for lithostathine and 

EXTL3, NeuN, MAP2, βtub, and GFAP were observed with a Leica fluorescent 

microscope (DMR; Leica).  

2.4. Statistical analysis 

The number of positive cells/section was presented as mean ± SEM. Comparisons 

were performed by a one-way ANOVA (Statview 4.5) followed by a Fisher’s PLSD 

test. p< 0.05 was considered significant. 

3. RESULTS 

3.1. Regional distribution of lithostathine immunoreactivity 

The distribution of lithostathine immunoreactivity was assessed by examining 

different levels of lemur brain tissue from medial (Fig.1A) to temporal (Fig.1B) 

sections. Fibers within the white matter were immunopositive: corpus callosum, 

fornix, internal capsule, anterior part of the anterior commissure, olfactory tract, optic 

chiasma, posterior commissure, pedunculus cerebri, tractus tegmenti centralis, pons, 

tractus solitarius, pedunculus cerebellaris. Positive cells were observed in the 

olfactory tubercle, into piriform cortex, entorhinal cortex and amygdale (Fig.1A-B).  

Within the grey matter, immunopositive cells were scattered into cerebral neocortex, 

in layers III (external pyramidal layer) and V (internal pyramidal layer). Strongly 

positive cells were also observed in layer II (external granular layer) and IV (internal 

granular layer) (Fig.1C, E, F).  

In subcortical areas, some cells were stained in the anterior hypothalamic area and 

into the reticular nucleus of the thalamus (Fig.1D). The most abundant population of 

lithostathine-positive cells was evidenced in superior and inferior colliculi where 

magnocellular pyramidal cells were strongly immunoreactive (Fig.1G). Magnocellular 

cells were also detected in brainstem into the locus coeruleus 
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Morphologically, lithostathine-positive cells  were mainly large pyramidal cells in layer 

III and V (Fig.2A, C, E-G) and small-size cells in other layers (Fig.2A, C). None of the 

immunopositive cells showed lithostathine staining in their nuclei. Positive cells were 

numerous in parietal cortex and more abundant in frontal, occipital and temporal 

cortex. In the hippocampus, we essentially observed cells in the ventral part, in CA2 

area (Fig.2B, H). Fibers were detected in the subiculum entering into the ventral part 

of the hippocampus and numerous synaptic labeling were observed in CA2 and CA3 

layers (Fig.2D). In the dorsal part, no immunofluorescent cells were detected. Control 

sections in which the primary antibody was omitted showed no immunoreactivity. The 

control experiments showed that the secondary antibodies did not cross-react with 

each other (data not shown).  

In old mouse lemurs, lithostathine was generally observed in the same areas with 

discrepancies in location in cortical areas compared to adults. In old animals, protein 

accumulation was essentially observed in the parietal and occipital cortex whereas in 

adult brains, protein accumulation was rather observed in all cortical areas. Old 

mouse lemur brains were also characterized by strong accumulation of lipofuscin 

granules into the neurons of cortex and subcortical structures (data not shown). 

 

3.2. Cellular localization and morphology 

Neuronal and glial markers were used to determine the phenotype of cells that 

displayed lithostathine immunoreactivity in the grey mouse lemur brain (Fig.2). 

Lithostathine labeling was mainly observed in the cytoplasm of neurons and also into 

almost all of neurites (see also Fig.1), evidenced by MAP2 (Fig.2A-B) and β-tubulin 

(Fig.2G-H) antibodies. For old animals, the location of lithostathine was rather 

detected at the vicinity of the membrane and not more in the cytoplasm (fig 5.H). The 
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neuronal marker NeuN (Fig.2C-F) stained almost all the immunopositive cells of the 

brain and GFAP antibody (Fig.2I-L) evidenced few lithostathine-positive ependymal 

cells of the lateral ventricle (Fig.2J) and some astrocytes into the fornix (Fig.2K) and 

optic chiasma (Fig.2L).  

 

3.3. Regional localization of lithostathine receptor EXTL3 

Pyramidal neurons and interneurons of the cerebral cortex were immunostained by 

EXTL3 antibody. Immunoreactivity was more abundant in temporo-occipital, fronto-

temporal and medial occipital area than in medial parietal area (Fig.3A-B, D, G, H). 

Olfactory areas as olfactory bulb, olfactory anterior nucleus, olfactory tubercle, 

pyriform cortex and entorhinal cortex showed numerous immunoreactive neurons. 

The dorsal part (Fig.3C) and the ventral part (Fig.3F) of the hippocampus showed 

some neurons labeled by EXTL3 antibody. Intense labeling was detected in the 

medial thalamus (dorsomedian, anteroventral nuclei) and also in lateral thalamic 

nuclei, geniculate and reticularis nuclei (Fig.3F). The anterior hypothalamic area and 

preoptic nucleus showed numerous immunostained neurons. In the mesencephalic 

areas, important labeling was detected in inferior and superior colliculi (Fig.3E). 

Lithostathine receptors were observed in the neurons of the red nucleus and 

substantia nigra nuclei and were scattered into the brainstem but essentially in the 

central interpeduncularis nucleus, the lateral lemniscus, the reticular tegmenti pontis 

nucleus, the raphe nuclei and in the vestibular nuclei. Using double 

immunofluorescence labeling, immunocytohistochemistry indicated that lithostathine 

and its receptor are localized in the same pyramidal neurons of hippocampic CA 

areas and cortex (Fig 3H). Specifically, the punctiform labeling suggested that 

lithostathine-EXTL3 interaction were localized predominantly to the endoplasmic 
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reticulum or Golgi, as already described for EXTL3 protein immunolabeling in cellular 

models or in Drosophila (Han et al., 2004; McCormick et al., 2000; Mizuno et al., 

2001).  

3.4. Comparative distribution of cortical lithostathine neurons in adult, 

aged and aged animals with amyloid plaques  

 

The presence of lithostathine was investigated in correlation with amyloid deposition 

by double labeling immunohistochemistry. In comparison to adult and healthy old 

lemurs (Fig. 4A,B), some old animals presented diffuse amyloid deposits (Fig. 4C) or 

compact plaques (Fig. 4D). In some animals, we observed lithostathine-positive 

neurons in close contact with amyloid deposits (Fig. 4E-H) but in most cases, 

lithostathine immunoreactivity was detected in areas with few amyloid plaques (Fig. 

4I-K). 

As shown in figure 5, the number of cells with lithostathine staining was statistically 

significant between the different groups analyzed (F2,17 = 24.4; p< 0.001). Notably, 

the number of positive cells per section was significantly increased by 10 fold in old 

lemurs (p< 0.01 vs. adult animals) and by 4.5 fold in old animals with amyloid 

plaques (p< 0.01 vs adult animals). Nevertheless, a decrease by 2.4-fold was 

observed when compared with healthy old lemurs (p< 0.01; Fig. 5). 

 

4. DISCUSSION 

Few investigations reported the presence of lithostathine in the normal brain. Studies 

were mostly dedicated to Alzheimer’s disease (de la Monte et al., 1990; Duplan et al., 

2001; Ozturk et al., 1989) or Creutzfeldt-Jakob disease (CJD) (Laurine et al., 2003), 

but not to normal aging. 



 13 

In the present investigation, we examined the presence of lithostathine and its 

receptor in the brain of the grey mouse lemur Microcebus murinus. Among the twelve 

old animals tested, six of them showed amyloid plaques but no neurofibrillary tangles 

nor cortical atrophy (data not shown). Unfortunately, cognitive performances were not 

investigated in those animals. 

Lithostathine immunoreactivity was observed in perikarya and neurites of cortical 

pyramidal neurons, but also in some glial cells particularly in the corpus callosum, as 

previously described in human brain (Ozturk et al., 1989). In the normal adult brain, a 

low level of protein immunoreactivity was detected. However, with aging, a strong 

accumulation of protein occurred in old mouse lemurs with or without amyloid 

plaques. In human, high levels of lithostathine-containing neurons was observed only 

for AD brains (de la Monte et al., 1990; Ozturk et al., 1989). These authors suggested 

that accumulation of lithostathine precedes or occurs independently of neurofibrillary 

tangles. They concluded that lithostathine was related to the evolution of AD lesions 

because immunolabeling was observed in AD patients or patients with Down 

Syndrome (DS), but not in normal brain. In addition, they observed that the density of 

the lithostathine-containing neurons was proportional to the distributions of 

neurofibrillary tangles in AD and DS. 

Lithostathine-immunoreactive neurons were observed at the vicinity of diffuse 

plaques but never detected into amyloid plaques or neurofibrillary tangles as it has 

been shown earlier (de la Monte et al., 1990; Duplan et al., 2001; Ozturk et al., 1989). 

By contrast, our data rather suggest that accumulation of lithostathine in old animals 

is not AD-specific but occurs mainly during normal aging, showing an unexpected 

increase compared to AD-like animals. The observation of high levels of lithostathine 

immunoreactivity in cortical areas of healthy aged animals deserves discussion. One 
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question to be addressed is why lithostathine accumulates in normal brain during 

aging ? First, it could be considered that the deficit of lithostathine level observed in 

AD-like aged animals in comparison to healthy elderly mouse lemurs and the location 

of amyloid plaques observed in areas devoid of lithostathine-reactive neurons 

suggest a protective role of lithostathine, as previously reported in peripheral tissues 

(Orelle et al., 1992; Sekikawa et al., 2005; Viterbo et al., 2009). This function may be 

related to a putative involvement of lithostathine in plasticity mechanisms as 

suggested by De La Monte et al. (de la Monte et al., 1990) or evidenced for an 

homologous regenerating protein Reg2 in central nervous system (Nishimune et al., 

2000). In contrast, based on the pro-inflammatory property of lithostathine and its link 

to pro-inflammatory cytokines overexpression (Duplan et al., 2001), we propose that 

accumulation of lithostathine in the brain would also be an indirect consequence of 

peculiar chronic inflammatory status during aging (Franceschi and Bonafe, 2003; 

Giunta et al., 2008; Giunta, 2006). All in all, these findings indicate that lithostathine 

represents an interesting protein to be investigated for its role in aging. 
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 Figure legends 

 

Figure 1: 

Lithostathine distribution in the Microcebus murinus brain  

Distribution of lithostathine immunopositive neurons from medial (A) to temporal (B) 

sections of mouse lemur brain atlas: neurons are largely distributed in the colliculi (c), 

cortex (cx), the hypothalamic area (h) and locus coeruleus (lc). Temporal section 

showed that lithostathine immunoreactive neurons were also present in thalamus (t), 

olfactory structures (olf) and hippocampus (hp). Immunostaining of lithostathine 

neurons in layers II (C) and in perikarya and neuritis of pyramidal cells in layer IV and 

V (E,F), in thalamus (D) and in colliculus (G). Scale bar: 50 µm. 

 

Figure 2:  

Cellular localization of lithostathine.  

Double immunostaining experiments were used to investigate the cellular localization 

of lithostathine. Specific antibody against lithostathine was revealed with Alexa Fluor 

488-labeled secondary antibodies (green immunolabeling) and specific antibodies 

against MAP2, -tubulin (tub), NeuN or GFAP were detected with Cy3-labeled 

secondary antibodies. The nuclei were counterstained with 4',6'-diamino-2-

phenylindole (DAPI). Lithostathine was observed in perikarya and neurites of 

neurons, in neocortical areas (A,C,E-G), in hippocampus (B,D,H) in astrocytes into 

the fornix (K) and optic chiasma (L) and in ependymar cells of the lateral ventricle (J). 

Scale bar: 30 µm. 
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Figure 3: 

Regional and cellular distribution of the lithostathine receptor EXTL3 in the 

Microcebus murinus brain.  

Representative overview of EXTL3 distribution from medial (A) to temporal (B) 

sections: EXTL3 positive cells are largely distributed into the cortical areas (cx) but 

also in subcortical areas: olfactory structures (olf), thalamic (t) and hypothalamic 

nuclei (h), ventral tegmental area (vta), colliculi (c) and brainstem (b).  

Immunoreactive cells were detected in pyramidal neurons of hippocampic CA areas 

(C,F), in pyramidal neurons of the cortex (D,G,H), and in thalamus (E). EXTL3 

(green) was observed in the neurons that showed lithosthatine immunoreactivity (red) 

(H1-3). 

 

Figure 4: 

Lithosthatine immunostaining in cortical areas of adult, healthy old and old 

lemur with amyloid plaques. 

Figure represents the cortical distribution of lithostathine immunostaining in adult (A), 

healthy old (B) and old lemur with amyloid plaques (J). The presence of amyloid 

plaques was detected by 8G7 (C, G) or FCA3542 (D) antibodies. Lithostathine 

neurons, visualized using 3,3' diaminobenzidine as the chromogen (brown) were 

sometimes detected in the vicinity of amyloid deposits (histogreen) (E,F,H). 

Distribution of neurons exhibiting lithostathine (I) and localization of A deposits in 

cerebral neocortex (J) and merge (K) of old-A lemur brain. Mapping of neurons and 

A plaques were performed using Mercator software (Explora Nova, La Rochelle, 

France) 
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Figure 5: 

Quantitative comparison of immunostained neurons for lithostathine in adult, 

healthy old and old-A lemur brains.  

Paraffin-embedded sections of adult brain were immunostained with the polyclonal 

rabbit antibody against human lithostathine and neurons of cortical brain area were 

counted using Mercator software. The values are mean ± SEM. Ns. no significant 

and  p<0.01 vs adult animals, and ++ p<0.01 vs healthy old animals. Adult animals: 

ID199 (1.5 year-old), ID484 (2 year-old), ID489 (2 year-old), ID155 (2.5 year-old), 

ID156 (2.5 year-old),  ID202 (3 year-old),  ID479 (3 year-old) and ID551 (4 year-old); 

healthy old lemurs: ID475 (8 year-old), ID486 (9 year-old), ID528 (9 year-old), ID921 

(9 year-old), ID435 (10 year-old),  ID468 (13 year-old); old A lemurs: ID463 (5.5 

year-old), ID988 (8 year-old), ID973 (9 year-old), ID473 (10 year-old), ID516 (10 

year-old),  ID896 (13 year-old) 
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