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Abstract. In order to evaluate the quality of segmentations of an im-
age and assess intra- and inter-expert variability in segmentation perfor-
mance, an Expectation Maximization (EM) algorithm for Simultaneous
Truth And Performance Level Estimation (STAPLE) was recently devel-
oped. This algorithm, originally presented for segmentation validation,
has since been used for many applications, such as atlas construction
and decision fusion. However, the manual delineation of structures of in-
terest is a very time consuming and burdensome task. Further, as the
time required and burden of manual delineation increase, the accuracy
of the delineation is decreased. Therefore, it may be desirable to ask
the experts to delineate only a reduced number of structures or the seg-
mentation of all structures by all experts may simply not be achieved.
Fusion from data with some structures not segmented by each expert
should be carried out in a manner that accounts for the missing informa-
tion. In other applications, locally inconsistent segmentations may drive
the STAPLE algorithm into an undesirable local optimum, leading to
misclassifications or misleading experts performance parameters.
We present a new algorithm that allows fusion with partial delineation
and which can avoid convergence to undesirable local optima in the pres-
ence of strongly inconsistent segmentations. The algorithm extends STA-
PLE by incorporating prior probabilities for the expert performance pa-
rameters. This is achieved through a Maximum A Posteriori formulation,
where the prior probabilities for the performance parameters are mod-
eled by a beta distribution. We demonstrate that this new algorithm
enables dramatically improved fusion from data with partial delineation
by each expert in comparison to fusion with STAPLE.

1 Introduction

Among numerous tools for the evaluation of automatic segmentation algorithms
with respect to manual delineations [1–4], an algorithm named STAPLE (for
Simultaneous Truth And Performance Level Estimation) [5] was proposed by
Warfield et al. as a novel way to compute simultaneously a reference segmenta-
tion and performance parameters from a set of segmentations. This algorithm
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is very versatile as it allows the evaluation of intra- and inter-rater variability
as well as the comparison of segmentation algorithms with respect to multiple
manual segmentations. It has therefore been used for many applications. Among
them, it has been either embedded in new atlas construction methods [6], uti-
lized to fuse segmentation decisions in multiple atlas-based segmentation [7], or
to compute atlas segmentations from registered manual delineations [8].

Manual delineation is a very time consuming and burdensome task, even
more when several structures have to be segmented in each image. Applications
of manual segmentation, such as delineation of brain structures for neuroscience
research, may be accelerated, and the quality of each segmentation improved, by
having more experts who each delineate fewer structures. Some structures may
then be missing in each rater segmentation. Performance estimation however
requires observations of segmentation decisions of each structure by each rater.
This can cause STAPLE to fail to provide accurate estimates of the reference
standard and expert performance parameters. It would therefore be extremely
valuable to take into account the missing structures to get accurate estimates
of the reference and performance parameters. This would also help for existing
datasets delineated in clinical conditions where structures are missing.

With this objective, Landman et al. [9] proposed an ad-hoc solution by fix-
ing the parameters for missing structures and ignoring background voxels. This
approach cannot be extended easily to take into account any prior on the expert
parameters. This would however be valuable as the estimation of the parameters
and reference segmentation may be incorrect when strong inconsistencies exist
between the input segmentations. Inconsistent delineations may indeed lead the
algorithm to an undesired local maximum where the performance parameter es-
timates converge to values incompatible with our prior information about rater
performance. We can introduce an explicit prior model for rater performance
parameters to drive the estimation algorithm to a better local optimum.

We propose a new algorithm that incorporates a prior probability for the
performance parameters estimated through STAPLE. This is performed by ex-
tending the expression of the expected value of the complete data log-likelihood
to a Maximum A Posteriori formulation incorporating prior probabilities as a
beta distribution on each performance parameter. We applied our algorithm to
label fusion with missing structures, and demonstrate its efficiency for improving
label fusion and reducing manual rater delineation burden.

2 Method

2.1 Summary of STAPLE

We first summarize the principle of STAPLE [5]. It takes as an input a set
of segmentations from J experts (either manual or automatic segmentations).
These segmentations may be binary or multi-category segmentations, i.e. sev-
eral structures are delineated with each structure represented by one specific
label. The labeling of each voxel, in an image of I voxels, provided by the seg-
mentation generators is referred to as segmentation decisions dij , indicating the
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label given by each expert j for voxel i, i ∈ [1 . . . I]. The goal of STAPLE is
then to estimate both a reference standard segmentation T , and parameters
θ = {θ1, . . . , θj , . . . , θJ} describing the agreement between each expert and the
reference standard. Each θj is represented by an L × L matrix, where L is the
number of labels, and θjs′s is the probability that the expert j gave the label s′

to a voxel i when the reference standard label is s, i.e. θjs′s = P (dij = s′|Ti = s).
If the reference standard was known, then estimating the performance pa-

rameters for each expert would be straightforward. However, as this reference
standard is unknown, an Expectation-Maximization approach [10, 11] is used to
estimate T and the expert performance parameters through the maximization
of the expected value of the complete data log-likelihood Q(θ|θ(k)):

Q(θ|θ(k)) =
∑

i

∑

j

∑

s

Wsi log(θjdijs) (1)

where Wsi denotes the posterior probability of T for label s: P (Ti = s|D, θ(k)).
The EM algorithm, which is guaranteed to converge to a local maximum, pro-
ceeds to identify the optimal estimate θ̂ by iterating two steps:

– E-Step: Compute Q(θ|θ(k)), the expected value of the complete data log-
likelihood given the current estimates of the expert parameters at iteration
k: θ(k). This requires computing P (T |D, θ(k)), i.e. the Wsi values [5].

– M-Step: Estimate new performance parameters θ(k+1), maximizing Q(θ|θ(k)).

2.2 Introducing Priors: a Maximum A Posteriori Formulation

We consider the possibility of utilizing a prior probability for the performance
parameters to modify the local maximum to which the estimator converges.
This can be done by utilizing Maximum A Posteriori (MAP) estimation rather
than Maximum Likelihood. MAP estimation is equivalent to augmenting the ex-
pected value of the complete data log-likelihood Q(θ|θ(k)) with a term log(P (θ))
corresponding to the prior probability of the parameters:

QMAP (θ|θ
(k)) = Q(θ|θ(k)) + log(P (θ)) (2)

As the performance parameters for each label are independent, P (θ) can be
expressed as a product of the independent probabilities P (θjs′s). The appropriate
form for the prior probability density function for each parameter θjs′s must be
chosen. Several properties are desirable for this prior distribution:

– θjs′s is a probability and therefore must take its values in [0, 1],
– it must be able to model any prior on the parameters (close to 1 e.g. diagonal

parameters, close to 0 e.g. non-diagonal parameters, or uniform prior),
– a function for which the logarithm is easily obtained as well as its derivatives.

The beta distribution, Bα,β , is particularly well suited to these requirements.
Its support ranges between 0.0 and 1.0 and it allows, based on two parameters
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α and β, to consider a broad range of prior distributions for the parameters for
each expert (particularly the specific combination α = β = 1 corresponds to the
uniform prior used in the regular STAPLE). Further, the relative weight of each
prior in Q can be modified by modeling the prior distribution as:

(Bα,β(x))
γ =

(

1

Z
xα−1(1− x)β−1

)γ

(3)

with γ ≥ 0.0 a scaling parameter. Z is the normalizing constant of the beta distri-
bution. Moreover, the logarithm and the derivatives of Bα,β are easily computed.

2.3 Solving the MAP formulation in the Multi-Category Case

We associate each parameter θjs′s with a prior defined as a γ-weighted beta dis-
tribution (Bα,β(x))

γ . The new expected value of the complete data log-likelihood
function for the expert j is then expressed as:

Q′
MAP (θj |θ

(k)) = γ
∑

s′

∑

s

(

(αjs′s − 1) log(θjs′s) + (βjs′s − 1) log(1− θjs′s)
)

+
∑

i

∑

s

Wsi log(θjdijs) (4)

The computation of the posterior probability of the reference standard segmen-
tation P (T |D, θ(k)) remains the same as in [5]. It indeed only depends on the
current estimates θ(k) and not on the prior on these parameters. However, the
M-Step is modified by the prior distribution on the parameters.

M-Step: A Fixed Point Iterative Solution The new estimates of the expert
performance parameters are computed by differentiating Q′

MAP with respect to
each θjs′s and equating the derivatives to 0 under the constraint that

∑

s′ θjs′s =
1. This leads to the following system for the parameters of each expert j:

θjs′s =

(

∑

i:dij=s′ Wsi

)

+ γ(αjs′s + βjs′s − 2) + γ
βjs′s−1

θjs′s−1

∑

n′

[(

∑

i:dij=n′ Wsi

)

+ γ(αjn′s + βjn′s − 2) + γ
βjn′s−1

θjn′s−1

] (5)

In this form, we can readily see that, for a particular label s and the set of
decisions s′, the expression in the numerator is calculated once for each s′ and the
denominator is simply the sum of the numerators. When using a uniform prior
on parameters (αjs′s = βjs′s = 1) this system further simplifies to the regular
STAPLE M-Step [5]. It also admits a closed form in two specific cases: first in the
binary case, where the non-diagonal parameters are entirely determined by the
values of the diagonal parameters, and also when all prior parameters βjs′s = 1.

In the general multi-category case, with βjs′s 6= 1, this system of equations
does not admit any closed form solution. We therefore propose a simple iterative
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method to solve this system of equations. Equation (5) is a continuous mapping
of the form θj = f(θj), with f : ]0, 1[N→]0, 1[N (where N is the number of
parameters to compute for expert j). The iterative approach consists of applying
the f mapping recursively to the current estimate, i.e. computing the sequence
{xn}n≥1 where xn+1 = f(xn) until convergence to the fixed point. Because of
the configuration of the mapping f , Schaefer’s fixed point theorem applies, which
guarantees that a fixed point solution to this system (θj = f(θj)) exists.

The {xn} sequence can be initialized from the previous parameters estimates

θ
(k)
j or from the regular STAPLE parameters estimates. These initializations

ensure that the sequence rapidly converges to the fixed point θ
(k+1)
j = f(θ

(k+1)
j ).

3 Results

We have applied our algorithm to multi-label segmentations fusion with missing
data. The manual segmentation of all structures in the entire brain is very long
and costly. Repeated segmentations of the same images are necessary to estimate
intra- and inter-rater variability, but this further increases the burden on each
rater. It would be much more practical if each rater could focus on only a subset
of structures, therefore lowering the segmentation burden of each rater. However
this leads to segmentations in which some structures are missing and in which
different error rates, associated with different raters, are present.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Database of Segmentations. Individual manual segmentations registered
on an average image. (a,c,e,g): original segmentations, (b,d,f,h): segmentations with 4
missing structures. Legend: red, blue, green: cortical, sub-cortical and cerebellar grey
matter, yellow: white matter, pink: CSF, cyan: cerebellar white matter and brainstem.
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To simulate this situation, we have used a database of 15 adult images (T1
images, size 256 × 256 × 175, 1 mm3) where all structures (CSF, subcortical,
cortical and cerebellar grey matter, white matter, cerebellar white matter) were
delineated over the whole brain (see images (a,c,e,g) on Fig. 1). For each im-
age, we then removed randomly 4 structures out of 6 (by replacing their labels
with background label 0, see images (b,d,f,h) on Fig. 1) in such a way that all
structures are segmented an equal number of times overall subjects.

We have aligned these images in a common template using Guimond et al.’s
method [12], and run STAPLE first without taking into account missing struc-
tures (regular STAPLE algorithm as proposed in [5]). Then, we have run MAP
STAPLE with a weight γ = 10, assuming a prior distribution close to 1 (α = 5,
β = 1.5) on diagonal elements for the delineated structures, on the background
for missing structures, and a prior close to 0 (α = 1.5, β = 5) on other pa-
rameters. These results as well as a regular STAPLE on the dataset without
missing structures are presented in Fig. 2. Another option to account for miss-
ing structures would be to consider the case where raters were asked to delineate
structures on an image where voxels are initially given an illegal label (e.g. -1)
and ignore in STAPLE those voxels with the illegal label. We implemented this
option with and without priors on parameters and the conclusions were similar.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Results on Label Fusion with Missing Data. (a,d): reference label fusion
(all structures used), (b,e): label fusion with a third of the segmentations, (c,f): label
fusion with a third of the segmentations with prior information.
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Not taking into account the missing structures in the STAPLE algorithm
leads to erroneous label fusion. We can indeed see on images (b) and (e) in
Fig. 2 that the interface between cortical grey matter and white matter gets
segmented as the background. Because missing structures are not taken into
account, experts who segmented the structures obtain poor performance scores
and the background becomes the most typical structure in this region. On the
contrary, when taking into account the missing structures (images (c) and (f))
by introducing an appropriate prior for the performance parameters values, the
label fusion is much closer to what would be expected and also very close to
regular STAPLE with all structures.

Structure CGM CeGM SCGM WM CeWM CSF

Regular STAPLE 0.678 0.959 0.957 0.866 0.940 0.939

MAP STAPLE 0.939 0.960 0.958 0.947 0.939 0.939

Table 1. Quantitative Evaluation of MAP STAPLE. Dice scores between the
STAPLE reference estimated from all segmentations (images (a,d) on Fig. 2) and from
the dataset with missing delineations using the regular STAPLE or MAP STAPLE.
Legend: CGM, CeGM, SCGM: cortical, cerebellar and sub-cortical grey matter, WM,
CeWM: brain and cerebellar white matter, CSF: cerebrospinal fluid.

This qualitative evaluation is confirmed by the Dice scores (shown in Table
1) between the results from the two methods and the reference segmentation
obtained from all structures. The MAP STAPLE formulation therefore facili-
tates the accurate estimation of the reference segmentation and performance
parameters by enabling accurate label fusion when expert raters are each asked
to delineate only some of the brain structures.

4 Conclusion

We have presented a new algorithm to incorporate in STAPLE prior information
for each of the expert performance parameters. This is obtained by utilizing a
Maximum A Posteriori formulation for the expected value of the complete data
log-likelihood and modeling the prior probability for each expert performance
parameter with a beta distribution, whose parameters α and β allow for any
prior distribution. We have derived a simple fixed point iterative solution for
the performance parameters estimates for the most general multi-category case.
Further, we identified specific cases where closed forms can be derived.

The MAP formulation we have presented may have many applications in val-
idation studies and label fusion. We have illustrated our algorithm on a database
with missing delineations (e.g. some structures are not segmented and assigned
the background level), showing how MAP STAPLE allows to deal with these im-
ages and produce meaningful results. This experiment is particularly interesting
as it will allow in the future for the design of validation experiments with multi-
ple experts and multiple structures while minimizing the delineation burden for
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the experts. Apart from this application, this algorithm may be used to drive the
STAPLE algorithm out of undesirable local maxima and obtain realistic tissue
classifications even in the presence of strongly inconsistent input segmentations.
This could be of great interest in the future to take into account registration
errors or inconsistencies among manual segmentations.

In the future, we will use this algorithm to define new validation protocols
with a lower delineation burden on the experts. This could be achieved for mul-
tiple structures as proposed here, or, for large structures, by asking the experts
to delineate different slices and fuse them using our multi-category MAP algo-
rithm, assigning each slice with a different label. Finally, the parameters α, β for
each θjs′s and the weight γ may have an important effect on fusion results. We
will perform a cross-validation study on these parameters and determine if γ can
be optimized automatically to get the best trade-off between prior and data.
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